ﻻ يوجد ملخص باللغة العربية
We describe a simple and scalable method for the transfer of CVD graphene for the fabrication of field effect transistors. This is a dry process that uses a modified RCA cleaning step to improve the surface quality. In contrast to conventional fabrication routes where lithographic steps are performed after the transfer, here graphene is transferred to a pre-patterned substrate. The resulting FET devices display nearly zero Dirac voltage, and the contact resistance between the graphene and metal contacts is on the order of 910 +- 340 Ohm-micrometer. This approach enables formation of conducting graphene channel lengths up to one millimeter. The resist-free transfer process provides a clean graphene surface that is promising for use in high sensitivity graphene FET biosensors.
Graphene is an emerging class of two-dimensional (2D) material with unique electrical properties and a wide range of potential practical applications. In addition, graphene hybrid structures combined with other 2D materials, metal microstructures, si
We have developed metal-oxide graphene field-effect transistors (MOGFETs) on sapphire substrates working at microwave frequencies. For monolayers, we obtain a transit frequency up to ~ 80 GHz for a gate length of 200 nm, and a power gain maximum freq
Placing graphene on uniaxial substrates may have interesting application potential for graphene-based photonic and optoelectronic devices. Here we analytically derive the dispersion relation for graphene plasmons on uniaxial substrates and discuss th
We study the percolation properties for a system of functionalized colloids on patterned substrates via Monte Carlo simulations. The colloidal particles are modeled as hard disks with three equally-distributed attractive patches on their perimeter. W
Allotropes of carbon, including one-dimensional carbon nanotubes and two-dimensional graphene sheets, continue to draw attention as promising platforms for probing the physics of electrons in lower dimensions. Recent research has shown that the elect