ﻻ يوجد ملخص باللغة العربية
A R&D project, named Nano5, has been recently launched to study an architectural design in view of addressing new experimental issues related to particle transport in high energy physics and other related physics disciplines with Geant4. In this frame, the first step has involved the redesign of the photon interaction models currently available in Geant4; this task has motivated a thorough investigation of the physics and computational features of these models, whose first results are presented here.
Radioactive decays are of concern in a wide variety of applications using Monte-Carlo simulations. In order to properly estimate the quality of such simulations, knowledge of the accuracy of the decay simulation is required. We present a validation o
Backscattering is a sensitive probe of the accuracy of electron scattering algorithms implemented in Monte Carlo codes. The capability of the Geant4 toolkit to describe realistically the fraction of electrons backscattered from a target volume is ext
The first results of a project in progress for the validation of the simulation of electron-positron pair production are presented. They concern the pair production cross section in a low energy range close to the production threshold. The results hi
CREME96 and GEANT4 are two well known particle transport codes through matter in space science. We present a comparison between the proton fluxes outgoing from an aluminium target, obtained by using both tools. The primary proton flux is obtained by
Particle induced X-ray emission (PIXE) is a physical effect that is not yet adequately modelled in Geant4. The current status as in Geant4 9.2 release is reviewed and new developments are described. The capabilities of the software prototype are illu