ﻻ يوجد ملخص باللغة العربية
We report an easy route single step synthesis of BiOCuS with and without Cu deficiency. The title compound is synthesized via solid state reaction route by encapsulation in an evacuated (10-3 Torr) quartz tube. Mixed components of the ingredients in stoichiometric ratio (1/3Bi2O3 +0.34Bi +Cu1-x + S) are pelletized, sealed in evacuated quartz tube and heat treated for 30 hours at 500 0C. Finally the sample is allowed to cool down to room temperature. The resultant compound is black is color and could not hold in pellet form, but is powdered. X-ray diffraction Reitveld analysis is carried out on all three samples of series BiOCu1-xS with x = 0.0, 0.10 and 0.15. These samples crystallize in single phase with space group P4/nmm and with cell parameters as a = 3.868 A and c = 8.557 A for stoichiometric BiOCuS. The volume of the cell slightly increases with an increase in Cu deficiency. The co-ordinate positions are determined by fitting the observed XRD patterns of the studied samples.
Investigation of isotope effects on superconducting transition temperature (Tc) is one of the useful methods to examine whether electron-phonon interaction is essential for pairing mechanisms. The layered BiCh2-based (Ch: S, Se) superconductor family
Universal scaling relations are of tremendous importance in science, as they reveal fundamental laws of nature. Several such scaling relations have recently been proposed for superconductors; however, they are not really universal in the sense that s
We suggest that a family of Ni-based compounds, which contain [Ni$_2$M$_2$O]$^{2-}$(M=chalcogen) layers with an antiperovskite structure constructed by mixed-anion Ni complexes, NiM$_4$O$_2$, can be potential high temperature superconductors upon dop
To shed light on the symmetry of the superconducting order parameter in Na_xCoO_2-yH_2O, the Mn doping effects are studied. X-ray absorption spectroscopy verifies that the doped Mn impurities occupy the Co sites and are with a valance close to +4. Im
Ternary iron arsenide EuFe$_2$As$_2$ with ThCr$_2$Si$_2$-type structure has been studied by magnetic susceptibility, resistivity, thermopower, Hall and specific heat measurements. The compound undergoes two magnetic phase transitions at about 200 K a