ﻻ يوجد ملخص باللغة العربية
We suggest that a family of Ni-based compounds, which contain [Ni$_2$M$_2$O]$^{2-}$(M=chalcogen) layers with an antiperovskite structure constructed by mixed-anion Ni complexes, NiM$_4$O$_2$, can be potential high temperature superconductors upon doping or applying pressure. The layer structures have been formed in many other transitional metal compounds such as La$_2$B$_2$Se$_2$O$_3$(B=Mn, Fe,Co). For the Ni-based compounds, we predict that the parental compounds host collinear antiferromagnetic states similar to those in the iron-based high temperature superconductors. The electronic physics near Fermi energy is controlled by two e$_{g}$ d-orbitals with completely independent in-plane kinematics. We predict that the superconductivity in this family is characterized by strong competition between extended s-wave and d-wave pairing symmetries.
In the search for the mechanism of high-temperature superconductivity, intense research has been focused on the evolution of the spin excitation spectrum upon doping from the antiferromagnetic insulating to the superconducting states of the cuprates.
The determination of the most appropriate starting point for the theoretical description of Fe-based materials hosting high temperature superconductivity remains among the most important unsolved problem in this relatively new field. Most of the work
The symmetry operations of the crystal groups relevant for the high temperature superconductors HgBa2CuO4+x (Hg1201), YBa2Cu3O7-x (YBCO), and Bi2Sr2CaCu2O8+x (BSCCO) are elucidated. The allowable combinations of the superconducting order parameter
A magnetic field relaxation at the center of a pulse-magnetized single-domain Y-Ba-Cu-O superconductor at 78K has been studied. In case of a weak magnetization, the magnetic flux density increases logarithmically and normalized relaxation rate define
The spectral energy gap is an important signature that defines states of quantum matter: insulators, density waves, and superconductors have very different gap structures. The momentum resolved nature of angle-resolved photoemission spectroscopy (ARP