ترغب بنشر مسار تعليمي؟ اضغط هنا

A new scissors mode on the skin of deformed neutron rich nuclei

124   0   0.0 ( 0 )
 نشر من قبل Ring Peter
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Covariant density functional theory is used to analyze the evolution of low-lying M1 strength in superfluid deformed nuclei in the framework of the self-consistent Relativistic Quasiparticle Random Phase Approximation (RQRPA). In nuclei with a pronounced neutron excess two scissor modes are found. Besides the conventional scissor mode, where the deformed proton and neutron distributions oscillate against each other, a new soft M1 mode is found, where the deformed neutron skin oscillates in a scissor like motion against a deformed proton-neutron core.



قيم البحث

اقرأ أيضاً

We review the impact of nuclear forces on matter at neutron-rich extremes. Recent results have shown that neutron-rich nuclei become increasingly sensitive to three-nucleon forces, which are at the forefront of theoretical developments based on effec tive field theories of quantum chromodynamics. This includes the formation of shell structure, the spectroscopy of exotic nuclei, and the location of the neutron dripline. Nuclear forces also constrain the properties of neutron-rich matter, including the neutron skin, the symmetry energy, and the structure of neutron stars. We first review our understanding of three-nucleon forces and show how chiral effective field theory makes unique predictions for many-body forces. Then, we survey results with three-nucleon forces in neutron-rich oxygen and calcium isotopes and neutron-rich matter, which have been explored with a range of many-body methods. Three-nucleon forces therefore provide an exciting link between theoretical, experimental and observational nuclear physics frontiers.
We calculate the ground, first intrinsic excited states and density distribution for neutron-rich thorium and uranium isotopes, within the framework of relativistic mean field(RMF) approach using axially deformed basis. The total nucleon densities ar e calculated, from which the cluster-structures inside the parent nuclei are determined. The possible modes of decay, like {alpha}-decay and b{eta} -decay are analyzed. We find the neutron-rich isotopes are stable against {alpha}-decay, however they are very much unstable against b{eta} -decay. The life time of these nuclei predicted to be tens of second against b{eta} -decay.
We discuss the present status of the description of the structure of the very neutron rich nuclei, in the framework of modern large scale shell model calculations. Particular attention is paid to the interaction related issues, as well as to the prob lems of the shell model approach at the neutron drip line. We present detailed results for nuclei around N=20 and, more briefly, we discuss some salient features of the regions close to N=8, 28 and 40. We show that most experimental features can be understood in a shell model context.
The Nuclear Level Densities (NLDs) and the $gamma$-ray Strength Functions ($gamma$SFs) of $^{153,155}$Sm have been extracted from (d,p$gamma$) coincidences using the Oslo method. The experimental NLD of $^{153}$Sm is higher than the NLD of $^{155}$Sm , in accordance with microscopic calculations. The $gamma$SFs of $^{153,155}$Sm are in fair agreement with QRPA calculations based on the D1M Gogny interaction. An enhancement is observed in the $gamma$SF for both $^{153,155}$Sm nuclei around 3 MeV in excitation energy and is attributed to the M1 Scissors Resonance (SR). Their integrated strengths were found to be in the range 1.3 - 2.1 and 4.4 - 6.4 $mu^{2}_{N}$ for $^{153}$Sm and $^{155}$Sm, respectively. The strength of the SR for $^{155}$Sm is comparable to those for deformed even-even Sm isotopes from nuclear resonance fluorescence measurements, while that of $^{153}$Sm is lower than expected.
118 - Bao-An Li , Wen-Jie Xie 2021
Both the incompressibility Ka of a finite nucleus of mass A and that ($K_{infty}$) of infinite nuclear matter are fundamentally important for many critical issues in nuclear physics and astrophysics. While some consensus has been reached about the $K _{infty}$, accurate theoretical predictions and experimental extractions of $K_{tau}$ characterizing the isospin dependence of Ka have been very difficult. We propose a differential approach to extract the Kt and Ki independently from the Ka data of any two nuclei in a given isotope chain. Applying this new method to the Ka data from isoscalar giant monopole resonances (ISGMR) in even-even Pb, Sn, Cd and Ca isotopes taken by U. Garg {it et al.} at the Research Center for Nuclear Physics (RCNP), Osaka University, Japan, we find that the $^{106}$Cd-$^{116}$Cd and $^{112}$Sn-$^{124}$Sn pairs having the largest differences in isospin asymmetries in their respective isotope chains measured so far provide consistently the most accurate up-to-date Kt value of $K_{tau}=-616pm 59$ MeV and $K_{tau}=-623pm 86$ MeV, respectively, largely independent of the remaining uncertainties of the surface and Coulomb terms in expanding the $K_{rm A}$, while the $K_{infty}$ values extracted from different isotopes chains are all well within the current uncertainty range of the community consensus for $K_{infty}$. Moreover, the size and origin of the Soft Sn Puzzle is studied with respect to the Stiff Pb Phenomenon. It is found that the latter is favored due to a much larger (by $sim 380$ MeV) Kt for Pb isotopes than for Sn isotopes, while the Ki from analyzing the Ka data of Sn isotopes is only about 5 MeV less than that from analyzing the Pb data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا