ﻻ يوجد ملخص باللغة العربية
Both the incompressibility Ka of a finite nucleus of mass A and that ($K_{infty}$) of infinite nuclear matter are fundamentally important for many critical issues in nuclear physics and astrophysics. While some consensus has been reached about the $K_{infty}$, accurate theoretical predictions and experimental extractions of $K_{tau}$ characterizing the isospin dependence of Ka have been very difficult. We propose a differential approach to extract the Kt and Ki independently from the Ka data of any two nuclei in a given isotope chain. Applying this new method to the Ka data from isoscalar giant monopole resonances (ISGMR) in even-even Pb, Sn, Cd and Ca isotopes taken by U. Garg {it et al.} at the Research Center for Nuclear Physics (RCNP), Osaka University, Japan, we find that the $^{106}$Cd-$^{116}$Cd and $^{112}$Sn-$^{124}$Sn pairs having the largest differences in isospin asymmetries in their respective isotope chains measured so far provide consistently the most accurate up-to-date Kt value of $K_{tau}=-616pm 59$ MeV and $K_{tau}=-623pm 86$ MeV, respectively, largely independent of the remaining uncertainties of the surface and Coulomb terms in expanding the $K_{rm A}$, while the $K_{infty}$ values extracted from different isotopes chains are all well within the current uncertainty range of the community consensus for $K_{infty}$. Moreover, the size and origin of the Soft Sn Puzzle is studied with respect to the Stiff Pb Phenomenon. It is found that the latter is favored due to a much larger (by $sim 380$ MeV) Kt for Pb isotopes than for Sn isotopes, while the Ki from analyzing the Ka data of Sn isotopes is only about 5 MeV less than that from analyzing the Pb data.
We calculate the ground, first intrinsic excited states and density distribution for neutron-rich thorium and uranium isotopes, within the framework of relativistic mean field(RMF) approach using axially deformed basis. The total nucleon densities ar
The incompressibility (compression modulus) $K_{rm 0}$ of infinite symmetric nuclear matter at saturation density has become one of the major constraints on mean-field models of nuclear many-body systems as well as of models of high density matter in
The symmetry energy obtained with the effective Skyrme energy density functional is related to the values of isoscalar effective mass and isovector effective mass, which is also indirectly related to the incompressibility of symmetric nuclear matter.
In this work we investigate the possible condensation of tetraneutron resonant states in the lower density neutron rich gas regions inside Neutron Stars (NSs). Using a relativistic density functional approach we characterize the system containing dif
We discuss the present status of the description of the structure of the very neutron rich nuclei, in the framework of modern large scale shell model calculations. Particular attention is paid to the interaction related issues, as well as to the prob