ﻻ يوجد ملخص باللغة العربية
We demonstrate digital tuning of the slow-light regime in silicon photonic-crystal waveguides by performing atomic layer deposition of hafnium oxide. The high group-index regime was deterministically controlled (red-shift of 140 +/- 10 pm per atomic layer) without affecting the group-velocity dispersion and third-order dispersion. Additionally, differential tuning of 110 +/- 30 pm per monolayer of the slow-light TE-like and TM-like modes was observed. This passive post-fabrication process has potential applications including the tuning of chip-scale optical interconnects, as well as Raman and parametric amplification.
We present the integrated chip-scale tuning of multiple photonic crystal cavities. The optimized implementation allows effective and precise tuning of multiple cavity resonances (up to ~1.60 nm/mW) and inter-cavity phase (~ 0.038 pi/mW) by direct loc
Four-wave mixing is observed in a silicon W1 photonic crystal waveguide. The dispersion dependence of the idler conversion efficiency is measured and shown to be enhanced at wavelengths exhibiting slow group velocities. A 12-dB increase in the conver
We report the observations of spontaneous Raman scattering in silicon photonic crystal waveguides. Continuous-wave measurements of Stokes emission for both wavelength and power dependence is reported in single line-defect waveguides in hexagonal latt
The spectral dependence of a bending loss of cascaded 60-degree bends in photonic crystal (PhC) waveguides is explored in a slab-type silicon-on-insulator system. Ultra-low bending loss of (0.05+/-0.03)dB/bend is measured at wavelengths corresponding
We propose and demonstrate the digital resonance tuning of high-Q/Vm silicon photonic crystal nanocavities using a self-limiting atomic layer deposition technique. Control of resonances in discrete steps of 122 +/- 18 pm per hafnium oxide atomic laye