ﻻ يوجد ملخص باللغة العربية
The spectral dependence of a bending loss of cascaded 60-degree bends in photonic crystal (PhC) waveguides is explored in a slab-type silicon-on-insulator system. Ultra-low bending loss of (0.05+/-0.03)dB/bend is measured at wavelengths corresponding to the nearly dispersionless transmission regime. In contrast, the PhC bend is found to become completely opaque for wavelengths range corresponding to the slow light regime. A general strategy is presented and experimentally verified to optimize the bend design for improved slow light transmission.
The threshold properties of photonic crystal quantum dot lasers operating in the slow-light regime are investigated experimentally and theoretically. Measurements show that, in contrast to conventional lasers, the threshold gain attains a minimum val
Reflection at relativistically moving plasma mirrors is a well-known approach for frequency conversion as an alternative to nonlinear techniques. A key issue with plasma mirrors is the need for a high carrier concentration, of order 10^21 cm^-3, to a
The exploration of binary valley degree of freedom in topological photonic systems has inspired many intriguing optical phenomena such as photonic Hall effect, robust delay lines, and perfect out-coupling refraction. In this work, we experimentally d
We report a valley photonic crystal (VPhC) waveguide in a GaAs slab with InAs quantum dots (QDs) as an internal light source exploited for experimental characterization of the waveguide. A topological interface state formed at the interface between t
Four-wave mixing is observed in a silicon W1 photonic crystal waveguide. The dispersion dependence of the idler conversion efficiency is measured and shown to be enhanced at wavelengths exhibiting slow group velocities. A 12-dB increase in the conver