ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal experiment design revisited: fair, precise and minimal tomography

196   0   0.0 ( 0 )
 نشر من قبل Joshua Nunn
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Given an experimental set-up and a fixed number of measurements, how should one take data in order to optimally reconstruct the state of a quantum system? The problem of optimal experiment design (OED) for quantum state tomography was first broached by Kosut et al. [arXiv:quant-ph/0411093v1]. Here we provide efficient numerical algorithms for finding the optimal design, and analytic results for the case of minimal tomography. We also introduce the average OED, which is independent of the state to be reconstructed, and the optimal design for tomography (ODT), which minimizes tomographic bias. We find that these two designs are generally similar. Monte-Carlo simulations confirm the utility of our results for qubits. Finally, we adapt our approach to deal with constrained techniques such as maximum likelihood estimation. We find that these are less amenable to optimization than cruder reconstruction methods, such as linear inversion.



قيم البحث

اقرأ أيضاً

Quantum state tomography is an indispensable but costly part of many quantum experiments. Typically, it requires measurements to be carried in a number of different settings on a fixed experimental setup. The collected data is often informationally o vercomplete, with the amount of information redundancy depending on the particular set of measurement settings chosen. This raises a question about how should one optimally take data so that the number of measurement settings necessary can be reduced. Here, we cast this problem in terms of integer programming. For a given experimental setup, standard integer programming algorithms allow us to find the minimum set of readout operations that can realize a target tomographic task. We apply the method to certain basic and practical state tomographic problems in nuclear magnetic resonance experimental systems. The results show that, considerably less readout operations can be found using our technique than it was by using the previous greedy search strategy. Therefore, our method could be helpful for simplifying measurement schemes so as to minimize the experimental effort.
Practical quantum state tomography is usually performed by carrying out repeated measurements on many copies of a given state. The accuracy of the reconstruction depends strongly on the dimensionality of the system and the number of copies used for t he measurements. We investigate the accuracy of an experimental implementation of a minimal and optimal tomography scheme for one- and two-qubit states encoded in the polarization of photons. A suitable statistical model for the attainable accuracy is introduced.
66 - Yonatan Gazit , Hui Khoon Ng , 2019
Quantum process tomography --- a primitive in many quantum information processing tasks --- can be cast within the framework of the theory of design of experiment (DoE), a branch of classical statistics that deals with the relationship between inputs and outputs of an experimental setup. Such a link potentially gives access to the many ideas of the rich subject of classical DoE for use in quantum problems. The classical techniques from DoE cannot, however, be directly applied to the quantum process tomography due to the basic structural differences between the classical and quantum estimation problems. Here, we properly formulate quantum process tomography as a DoE problem, and examine several examples to illustrate the link and the methods. In particular, we discuss the common issue of nuisance parameters, and point out interesting features in the quantum problem absent in the usual classical setting.
Quantum detector tomography is a fundamental technique for calibrating quantum devices and performing quantum engineering tasks. In this paper, we design optimal probe states for detector estimation based on the minimum upper bound of the mean square d error (UMSE) and the maximum robustness. We establish the minimum UMSE and the minimum condition number for quantum detectors and provide concrete examples that can achieve optimal detector tomography. In order to enhance estimation precision, we also propose a two-step adaptive detector tomography algorithm and investigate how this adaptive strategy can be used to achieve efficient estimation of quantum detectors. Moreover, the superposition of coherent states are used as probe states for quantum detector tomography and the estimation error is analyzed. Numerical results demonstrate the effectiveness of both the proposed optimal and adaptive quantum detector tomography methods.
We develop a practical quantum tomography protocol and implement measurements of pure states of ququarts realized with polarization states of photon pairs (biphotons). The method is based on an optimal choice of the measuring schemes parameters that provides better quality of reconstruction for the fixed set of statistical data. A high accuracy of the state reconstruction (above 0.99) indicates that developed methodology is adequate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا