ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum process tomography via optimal design of experiments

67   0   0.0 ( 0 )
 نشر من قبل Hui Khoon Ng
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum process tomography --- a primitive in many quantum information processing tasks --- can be cast within the framework of the theory of design of experiment (DoE), a branch of classical statistics that deals with the relationship between inputs and outputs of an experimental setup. Such a link potentially gives access to the many ideas of the rich subject of classical DoE for use in quantum problems. The classical techniques from DoE cannot, however, be directly applied to the quantum process tomography due to the basic structural differences between the classical and quantum estimation problems. Here, we properly formulate quantum process tomography as a DoE problem, and examine several examples to illustrate the link and the methods. In particular, we discuss the common issue of nuisance parameters, and point out interesting features in the quantum problem absent in the usual classical setting.



قيم البحث

اقرأ أيضاً

72 - Jun Suzuki 2020
In this paper, we study the quantum-state estimation problem in the framework of optimal design of experiments. We first find the optimal designs about arbitrary qubit models for popular optimality criteria such as A-, D-, and E-optimal designs. We a lso give the one-parameter family of optimality criteria which includes these criteria. We then extend a classical result in the design problem, the Kiefer-Wolfowitz theorem, to a qubit system showing the D-optimal design is equivalent to a certain type of the A-optimal design. We next compare and analyze several optimal designs based on the efficiency. We explicitly demonstrate that an optimal design for a certain criterion can be highly inefficient for other optimality criteria.
Quantum state tomography is an indispensable but costly part of many quantum experiments. Typically, it requires measurements to be carried in a number of different settings on a fixed experimental setup. The collected data is often informationally o vercomplete, with the amount of information redundancy depending on the particular set of measurement settings chosen. This raises a question about how should one optimally take data so that the number of measurement settings necessary can be reduced. Here, we cast this problem in terms of integer programming. For a given experimental setup, standard integer programming algorithms allow us to find the minimum set of readout operations that can realize a target tomographic task. We apply the method to certain basic and practical state tomographic problems in nuclear magnetic resonance experimental systems. The results show that, considerably less readout operations can be found using our technique than it was by using the previous greedy search strategy. Therefore, our method could be helpful for simplifying measurement schemes so as to minimize the experimental effort.
Quantum process tomography has become increasingly critical as the need grows for robust verification and validation of candidate quantum processors. Here, we present an approach for efficient quantum process tomography that uses a physically motivat ed ansatz for an unknown quantum process. Our ansatz bootstraps to an effective description for an unknown process on a multi-qubit processor from pairwise two-qubit tomographic data. Further, our approach can inherit insensitivity to system preparation and measurement error from the two-qubit tomography scheme. We benchmark our approach using numerical simulation of noisy three-qubit gates, and show that it produces highly accurate characterizations of quantum processes. Further, we demonstrate our approach experimentally, building three-qubit gate reconstructions from two-qubit tomographic data.
We investigate quantum state tomography (QST) for pure states and quantum process tomography (QPT) for unitary channels via $adaptive$ measurements. For a quantum system with a $d$-dimensional Hilbert space, we first propose an adaptive protocol wher e only $2d-1$ measurement outcomes are used to accomplish the QST for $all$ pure states. This idea is then extended to study QPT for unitary channels, where an adaptive unitary process tomography (AUPT) protocol of $d^2+d-1$ measurement outcomes is constructed for any unitary channel. We experimentally implement the AUPT protocol in a 2-qubit nuclear magnetic resonance system. We examine the performance of the AUPT protocol when applied to Hadamard gate, $T$ gate ($pi/8$ phase gate), and controlled-NOT gate, respectively, as these gates form the universal gate set for quantum information processing purpose. As a comparison, standard QPT is also implemented for each gate. Our experimental results show that the AUPT protocol that reconstructing unitary channels via adaptive measurements significantly reduce the number of experiments required by standard QPT without considerable loss of fidelity.
Quantum process tomography is an experimental technique to fully characterize an unknown quantum process. Standard quantum process tomography suffers from exponentially scaling of the number of measurements with the increasing system size. In this wo rk, we put forward a quantum machine learning algorithm which approximately encodes the unknown unitary quantum process into a relatively shallow depth parametric quantum circuit. We demonstrate our method by reconstructing the unitary quantum processes resulting from the quantum Hamiltonian evolution and random quantum circuits up to $8$ qubits. Results show that those quantum processes could be reconstructed with high fidelity, while the number of input states required are at least $2$ orders of magnitude less than required by the standard quantum process tomography.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا