ترغب بنشر مسار تعليمي؟ اضغط هنا

Epitaxial growth of Fe3O4 thin films on ZnO and MgO substrates

487   0   0.0 ( 0 )
 نشر من قبل Andreas M\\\"uller
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Muller




اسأل ChatGPT حول البحث

Magnetite thin fims have been grown epitaxially on ZnO and MgO substrates using molecular beam epitaxy. The film quality was found to be strongly dependent on the oxygen partial pressure during growth. Structural, electronic, and magnetic properties were analyzed utilizing Low Energy Electron Diffraction (LEED), HArd X-ray PhotoElectron Spectroscopy (HAXPES), Magneto Optical Kerr Effect (MOKE), and X-ray Magnetic Circular Dichroism (XMCD). Diffraction patterns show clear indication for growth in the (111) direction on ZnO. Vertical structure analysis by HAXPES depth profiling revealed uniform magnetite thin films on both type of substrates. Both, MOKE and XMCD measurements show in-plane easy magnetization with a reduced magnetic moment in case of the films on ZnO.



قيم البحث

اقرأ أيضاً

131 - D. Reisinger , B. Blass , J. Klein 2002
The use of oxide materials in oxide electronics requires their controlled epitaxial growth. Recently, it was shown that Reflection High Energy Electron Diffraction (RHEED) allows to monitor the growth of oxide thin films even at high oxygen pressure. Here, we report the sub-unit cell molecular or block layer growth of the oxide materials Sr2RuO4, MgO, and magnetite using Pulsed Laser Deposition (PLD) from stoichiometric targets. Whereas for perovskites such as SrTiO3 or doped LaMnO3 a single RHEED intensity oscillation is found to correspond to the growth of a single unit cell, in materials where the unit cell is composed of several molecular layers or blocks with identical stoichiometry, a sub-unit cell molecular or block layer growth is established resulting in several RHEED intensity oscillations during the growth of a single unit-cell.
Nanoscale Fe3O4 epitaxial thin film has been synthesized on MgO/GaAs(100) spintronic heterostructure, and studied with X-ray magnetic circular dichroism (XMCD). We have observed a total magnetic moment of (3.32 +- 0.1) uB/f.u., retaining 83% of the b ulk value. Unquenched orbital moment of (0.47 +- 0.05) uB/f.u. has been confirmed by carefully applying the sum rule. The results offer direct experimental evidence of the bulk-like total magnetic moment and a large orbital moment in the nanoscale fully epitaxial Fe3O4/MgO/GaAs(100) heterostructure, which is significant for spintronics applications.
TbMnO$_{3}$ films have been grown under compressive strain on (001)-oriented SrTiO$_{3}$ crystals. They have an orthorhombic structure and display the (001) orientation. With increasing thickness, the structure evolves from a more symmetric (tetragon al) to a less symmetric (bulk-like orthorhombic) structure, while keeping constant the in-plane compression thereby leaving the out-of-plane lattice spacing unchanged. The domain microstructure of the films is also revealed, showing an increasing number of orthorhombic domains as the thickness is decreased: we directly observe ferroelastic domains as narrow as 4nm. The high density of domain walls may explain the induced ferromagnetism observed in the films, while both the decreased anisotropy and the small size of the domains could account for the absence of a ferroelectric spin spiral phase.
10 nm and 50 nm Co$_{2}$FeAl (CFA) thin films have been deposited on MgO(001) and Si(001) substrates by magnetron sputtering and annealed at different temperatures. X-rays diffraction revealed polycrystalline or epitaxial growth (according to the rel ation CFA(001)[110]//MgO(001)[100] epitaxial relation), respectively for CFA films grown on a Si and on a MgO substrate. For these later, the chemical order varies from the A2 phase to the B2 phase when increasing the annealing temperature (Ta) while only the A2 disorder type has been observed for CFA grown on Si. Microstrip ferromagnetic resonance (MS-FMR) measurements revealed that the in-plane anisotropy results from the superposition of a uniaxial and of a fourfold symmetry term for CFA grown on MgO substrates. This fourfold anisotropy, which disappears completely for samples grown on Si, is in accord with the crystal structure of the samples. The fourfold anisotropy field decreases when increasing Ta while the uniaxial anisotropy field is nearly unaffected by Ta within the investigated range. The MS-FMR data also allow for concluding that the gyromagnetic factor remains constant and that the exchange stiffness constant increases with $T_{a}$. Finally, the FMR linewidth decreases when increasing Ta, due to the enhancement of the chemical order. We derive a very low intrinsic damping parameter (1.3*10^-3 and 1.1*10^-3 for films of 50 nm thickness annealed at 615 {deg}C grown on MgO and on Si, respectively).
The influence of the deposition pressure PO2 and substrate temperature TS during the growth of Bi2FeCrO6 thin films grown by pulsed laser deposition has been investigated. It is found that the high volatility of Bi makes the deposition very difficult and that the growth of pure Bi2FeCrO6 thin films on SrTiO3 substrates is possible only in a narrow deposition parameter window. We find that the pure Bi2FeCrO6 phase is formed within a narrow window around an oxygen pressure PO2 =1.210-2 mbar and around a substrate temperature TS=680 degC. At lower temperature or higher pressure, Bi7.38Cr0.62O12+x_also called (b*Bi2O3)and Bi2Fe4O9 /Bi2(Fe,Cr)4O9+x phases are detected, while at lower pressure or higher temperature a (Fe,Cr)3O4 phase forms. Some of these secondary phases are not well known and have not been previously studied. We previously reported Fe/Cr cation ordering as the probable origin of the tenfold improvement in magnetization at saturation of our Bi2FeCrO6 film, compared to BiFeO3. Here, we address the effect of the degree of cationic ordering on the magnetic properties of the Bi2FeCrO6 single phase. Polarization measurements at room temperature reveal that our Bi2FeCrO6 films have excellent ferroelectric properties with ferroelectric hysteresis loops exhibiting a remanent polarization as high as 55-60 miroC/cm2 along the pseudocubic (001) direction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا