ﻻ يوجد ملخص باللغة العربية
We measure the permeability of a fluidized bed of monodispersed bubbles with soap solution characteristic of mobile and non-mobile interfaces. These experimental data extend the permeability curves previously published for foam in the dry limit. In the wet limit, these data join the permeability curves of a hard sphere suspension at porosity equal to 0.4 and 0.6 in the cases of mobile and non-mobile interfaces respectively. We show that the model of permeability proposed by Kozeny and Carman and originally validated for packed beds of spheres (with porosity around 0.4) can be successfully applied with no adjustable parameters to liquid fractions from 0.001 up to 0.85 for systems made of monodisperse and deformable entities with non-mobile interfaces.
We study the topology and geometry of two dimensional coarsening foams with arbitrary liquid fraction. To interpolate between the dry limit described by von Neumanns law, and the wet limit described by Marqusee equation, the relevant bubble character
Two-dimensional Particle Tracking Velocimetry (PTV) is a promising technique to study the behaviour of granular flows. The aim is to experimentally determine the free surface width and position of the shear band from the velocity profile to validate
We investigated the yield stress and the apparent viscosity of sand with and without small amounts of liquid. By pushing the sand through a tube with an enforced Poiseuille like profile we minimize the effect of avalanches and shear localization. We
Surface bubbles are present in many industrial processes and in nature, as well as in CO$_2$ beverage. They have motivated many theoretical, numerical and experimental works. This paper presents the current knowledge on the physics of surface bubbles
Wetting transitions have been predicted and observed to occur for various combinations of fluids and surfaces. This paper describes the origin of such transitions, for liquid films on solid surfaces, in terms of the gas-surface interaction potentials