ﻻ يوجد ملخص باللغة العربية
We investigated the yield stress and the apparent viscosity of sand with and without small amounts of liquid. By pushing the sand through a tube with an enforced Poiseuille like profile we minimize the effect of avalanches and shear localization. We find that the system starts to flow when a critical shear of the order of one particle diameter is exceeded. In contrast to common believe, we observe that the resistance against the flow of wet sand is much smaller than that of dry sand. For the dissipative flow we propose a non-equilibrium state equation for granular fluids.
Sand electrification is important for aeolian sediment transportation on terrestrial bodies with silicate sand as the main sediment composition. However, it has not been thoroughly studied for icy bodies such as Titan with organic sand as the main du
The stress-dilatancy relation is of critical importance for constitutive modelling of sand. A new fractional-order stress-dilatancy equation is analytically developed in this study, based on stress-fractional operators. An apparent linear response of
We report an experimental study of a binary sand bed under an oscillating water flow. The formation and evolution of ripples is observed. The appearance of a granular segregation is shown to strongly depend on the sand bed preparation. The initial wa
A two state sandpile model with preferential sand distribution is developed and studied numerically on scale free networks with power-law degree ($k$) distribution, {em i.e.}: $P_ksim k^{-alpha}$. In this model, upon toppling of a critical node sand
We relate the breakdown of equations of states for the mechanical pressure of generic dry active systems to the lack of momentum conservation in such systems. We show how sources and sinks of momentum arise generically close to confining walls. These