ﻻ يوجد ملخص باللغة العربية
Through a systematic high resolution angle-resolved photoemission study of the iron pnictide compounds (Ba,Sr)Fe$_2$As$_2$, we show that the electronic structures of these compounds are significantly reconstructed across the spin density wave ordering, which cannot be described by a simple folding scenario of conventional density wave ordering. Moreover, we find that LDA calculations with an incorporated suppressed magnetic moment of 0.5$mu_{tiny{textrm{B}}}$ can match well the details in the reconstructed electronic structure, suggesting that the nature of magnetism in the pnictides is more itinerant than local, while the origin of suppressed magnetic moment remains an important issue for future investigations.
From first-principles density functional theory calculations combined with varying temperature Raman experiments, we show that AFe$_2$As$_2$ (A=Ba, Sr), the parent compound of the FeAs based superconductors of the new structural family, undergoes a s
We performed optical spectroscopy measurement on single crystals of BaFe$_2$As$_2$ and SrFe$_2$As$_2$, the parent compounds of FeAs based superconductors. Both are found to be quite metallic with fairly large plasma frequencies at high temperature. U
We report a doping dependent electronic Raman scattering measurements on iron-pnictide superconductor Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ single crystals. A strongly anisotropic gap is found at optimal doping for x=0.065 with $Delta_{max}sim 5Delta_{min}$
We report Raman scattering measurements on iron-pnictide superconductor Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ single crystals with varying cobalt $x$ content. The electronic Raman continuum shows a strong spectral weight redistribution upon entering the mag
We have successfully grown high quality single crystals of SrFe$_2$As$_2$ and A$_{0.6}$K$_{0.4}$Fe$_2$As$_2$(A=Sr, Ba) using flux method. The resistivity, specific heat and Hall coefficient have been measured. For parent compound SrFe$_2$As$_2$, an a