ترغب بنشر مسار تعليمي؟ اضغط هنا

Transport and anisotropy in single-crystalline SrFe$_2$As$_2$ and $A_{0.6}$K$_{0.4}$Fe$_2$As$_2$ ($A$ = Sr, Ba) superconductors

449   0   0.0 ( 0 )
 نشر من قبل Jianlin Luo
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have successfully grown high quality single crystals of SrFe$_2$As$_2$ and A$_{0.6}$K$_{0.4}$Fe$_2$As$_2$(A=Sr, Ba) using flux method. The resistivity, specific heat and Hall coefficient have been measured. For parent compound SrFe$_2$As$_2$, an anisotropic resistivity with $rho_c$ / $rho_{ab}$ as large as 130 is obtained at low temperatures. A sharp drop in both in-plane and out-plane resistivity due to the SDW instability is observed below 200 K. The angular dependence of in-plane magnetoresistance shows 2-fold symmetry with field rotating within ab plane below SDW transition temperature. This is consistent with a stripe-type spin ordering in SDW state. In K doped A$_{0.6}$K$_{0.4}$Fe$_2$As$_2$(A=Sr. Ba), the SDW instability is suppressed and the superconductivity appears with T$_c$ above 35 K. The rather low anisotropy in upper critical field between H$parallel$ab and H$parallel$c indicates inter-plane coupling play an important role in hole doped Fe-based superconductors.



قيم البحث

اقرأ أيضاً

149 - J.-Q. Yan , S. Nandi , B. Saparov 2014
La$_{0.4}$Na$_{0.6}$Fe$_2$As$_2$ single crystals have been grown out of an NaAs flux in an alumina crucible and characterized by measuring magnetic susceptibility, electrical resistivity, specific heat, as well as single crystal x-ray and neutron dif fraction. La$_{0.4}$Na$_{0.6}$Fe$_2$As$_2$ single crystals show a structural phase transition from a high temperature tetragonal phase to a low-temperature orthorhombic phase at T$_s$,=,125,K. This structural transition is accompanied by an anomaly in the temperature dependence of electrical resistivity, anisotropic magnetic susceptibility, and specific heat. Concomitant with the structural phase transition, the Fe moments order along the emph{a} direction with an ordered moment of 0.7(1),$mu_{textup{B}}$ at emph{T},=,5 K. The low temperature stripe antiferromagnetic structure is the same as that in other emph{A}Fe$_{2}$As$_{2}$ (emph{A},=,Ca, Sr, Ba) compounds. La$_{0.5-x}$Na$_{0.5+x}$Fe$_2$As$_2$ provides a new material platform for the study of iron-based superconductors where the electron-hole asymmetry could be studied by simply varying La/Na ratio.
113 - L. Chen , T. T. Han , C. Cai 2021
Pairing symmetry which characterizes the superconducting pairing mechanism is normally determined by measuring the superconducting gap structure ($|Delta_k|$). Here, we report the measurement of a strain-induced gap modulation ($partial|Delta_k|$) in uniaxially strained Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ utilizing angle-resolved photoemission spectroscopy and $in$-$situ$ strain-tuning. We found that the uniaxial strain drives Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ into a nematic superconducting state which breaks the four-fold rotational symmetry of the superconducting pairing. The superconducting gap increases on the $d_{yz}$ electron and hole pockets while it decreases on the $d_{xz}$ counterparts. Such orbital selectivity indicates that orbital-selective pairing exists intrinsically in non-nematic iron-based superconductors. The $d_{xz}$ and $d_{yz}$ pairing channels are balanced originally in the pristine superconducting state, but become imbalanced under uniaxial strain. Our results highlight the important role of intra-orbital scattering in mediating the superconducting pairing in iron-based superconductors. It also highlights the measurement of $partial|Delta_k|$ as an effective way to characterize the superconducting pairing from a perturbation perspective.
174 - Y.-M. Xu , Y.-B. Huang , X.-Y. Cui 2010
The iron-pnictide superconductors have a layered structureformed by stacks of FeAs planes from which the superconductivity originates. Given the multiband and quasi three-dimensional cite{3D_SC} (3D) electronic structure of these high-temperature sup erconductors, knowledge of the quasi-3D superconducting (SC) gap is essential for understanding the superconducting mechanism. By using the KZ-capability of angle-resolved photoemission, we completely determined the SC gap on all five Fermi surfaces (FSs) in three dimensions on BKFAOP samples. We found a marked KZ dispersion of the SC gap, which can derive only from interlayer pairing. Remarkably, the SC energy gaps can be described by a single 3D gap function with two energy scales characterizing the strengths of intralayer $Delta_1$ and interlayer $Delta_2$ pairing. The anisotropy ratio $Delta_2/Delta_1$, determined from the gap function, is close to the c-axis anisotropy ratio of the magnetic exchange coupling $J_c/J_{ab}$ in the parent compound cite{NeutronParent}. The ubiquitous gap function for all the 3D FSs reveals that pairing is short-ranged and strongly constrain the possible pairing force in the pnictides. A suitable candidate could arise from short-range antiferromagnetic fluctuations.
332 - N. Ni , S. L. Budko , A. Kreyssig 2008
Single crystals of BaFe$_2$As$_2$ and (Ba$_{0.55}$K$_{0.45}$)Fe$_2$As$_2$ have been grown out of excess Sn with 1% or less incorporation of solvent. The crystals are exceptionally micaceous, are easily exfoliated and can have dimensions as large as 3 x 3 x 0.2 mm$^3$. The BaFe$_2$As$_2$ single crystals manifest a structural phase transition from a high temperature tetragonal phase to a low temperature orthorhombic phase near 85 K and do not show any sign of superconductivity down to 1.8 K. This transition can be detected in the electrical resistivity, Hall resistivity, specific heat and the anisotropic magnetic susceptibility. In the (Ba$_{0.55}$K$_{0.45}$)Fe$_2$As$_2$ single crystals this transition is suppressed and instead superconductivity occurs with a transition temperature near 30 K. Whereas the superconducting transition is easily detected in resistivity and magnetization measurements, the change in specific heat near $T_c$ is small, but resolvable, giving $Delta C_p/gamma T_c approx 1$. The application of a 140 kOe magnetic field suppresses $T_c$ by only $sim 4$ K when applied along the c-axis and by $sim 2$ K when applied perpendicular to the c-axis. The ratio of the anisotropic upper critical fields, $gamma = H_{c2}^{perp c} / H_{c2}^{| c}$, varies between 2.5 and 3.5 for temperatures down to $sim 2$ K below $T_c$.
We show that electronic Raman scattering affords a window into the essential properties of the pairing potential $V_{mathbf{k},mathbf{k^{prime}}}$ of iron-based superconductors. In Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ we observe band dependent energy gaps along with excitonic Bardasis-Schrieffer modes characterizing, respectively, the dominant and subdominant pairing channel. The $d_{x^2-y^2}$ symmetry of all excitons allows us to identify the subdominant channel to originate from the interaction between the electron bands. Consequently, the dominant channel driving superconductivity results from the interaction between the electron and hole bands and has the full lattice symmetry. The results in Rb$_{0.8}$Fe$_{1.6}$Se$_2$ along with earlier ones in Ba(Fe$_{0.939}$Co$_{0.061}$)$_2$As$_2$ highlight the influence of the Fermi surface topology on the pairing interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا