ﻻ يوجد ملخص باللغة العربية
We present the $p_{T}$ spectra, elliptic flow ($v_2$) and coalescence parameters $B_{2}$ for $d$, $bar{d}$ ($1<p_{T}<4$ GeV/c) and $B_{3}$ for $^{3}He$, $bar{^{3}He}$ ($2<p_{T}<6$ GeV/c) produced at mid-rapidity in Au+Au col lisions at $sqrt{s_{_{NN}}} = 200$ GeV. The results are measured in the STAR experiment at RHIC. The spectra of the light nuclei show softer $p_T$ distributions than calculations from a blast-wave model in which the parameters were fixed from pion, kaon and proton $v_2$($p_T$) and $p_T$ distributions. The coalescence volume is found to track with pion HBT re sults for different collision geometries. The $v_2$ measurement for $d(overline{d})$ as a function of transverse momentum $p_T$ is found to follow an approximate atomic mass number ($A$) scaling while that of $^{3}He(bar{^{3}He}) $ deviates slightly from the scaling. A negative $v_{2}$ has been observed for $bar{d}$ at low $p_{T}$, consiste nt with large radial flow in Au+Au collisions.
We present the first measurement of elliptic ($v_2$) and triangular ($v_3$) flow in high-multiplicity $^{3}$He$+$Au collisions at $sqrt{s_{_{NN}}}=200$ GeV. Two-particle correlations, where the particles have a large separation in pseudorapidity, are
We present measurements of the transverse-momentum dependence of elliptic flow $v_2$ for identified pions and (anti)protons at midrapidity ($|eta|<0.35$), in 0%--5% central $p$$+$Au and $^3$He$+$Au collisions at $sqrt{s_{_{NN}}}=200$ GeV. When taken
Asymmetric nuclear collisions of $p$$+$Al, $p$$+$Au, $d$$+$Au, and $^{3}$He$+$Au at $sqrt{s_{_{NN}}}=200$ GeV provide an excellent laboratory for understanding particle production, as well as exploring interactions among these particles after their i
There is strong evidence for the formation of small droplets of quark-gluon plasma in $p/d/^{3}$He+Au collisions at the Relativistic Heavy Ion Collider (RHIC) and in $p$+$p$/Pb collisions at the Large Hadron Collider. In particular, the analysis of d
Recently the PHENIX Collaboration has made available two-particle correlation Fourier coefficients for multiple detector combinations in minimum bias p+p and 0-5% central p+Au, d+Au, 3He+Au collisions at 200 GeV [1]. Using these coefficients for thre