ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurements of mass-dependent azimuthal anisotropy in central $p$$+$Au, $d$$+$Au, and $^3$He$+$Au collisions at $sqrt{s_{_{NN}}}=200$ GeV

91   0   0.0 ( 0 )
 نشر من قبل Brant M. Johnson
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present measurements of the transverse-momentum dependence of elliptic flow $v_2$ for identified pions and (anti)protons at midrapidity ($|eta|<0.35$), in 0%--5% central $p$$+$Au and $^3$He$+$Au collisions at $sqrt{s_{_{NN}}}=200$ GeV. When taken together with previously published measurements in $d$$+$Au collisions at $sqrt{s_{_{NN}}}=200$ GeV, the results cover a broad range of small-collision-system multiplicities and intrinsic initial geometries. We observe a clear mass-dependent splitting of $v_2(p_{T})$ in $d$$+$Au and $^3$He$+$Au collisions, just as in large nucleus-nucleus ($A$$+$$A$) collisions, and a smaller splitting in $p$$+$Au collisions. Both hydrodynamic and transport model calculations successfully describe the data at low $p_T$ ($< 1.5$ GeV/$c$), but fail to describe various features at higher $p_T$. In all systems, the $v_2$ values follow an approximate quark-number scaling as a function of the hadron transverse kinetic energy per constituent quark($KE_T/n_q$), which was also seen previously in $A$$+$$A$ collisions.



قيم البحث

اقرأ أيضاً

There is strong evidence for the formation of small droplets of quark-gluon plasma in $p/d/^{3}$He+Au collisions at the Relativistic Heavy Ion Collider (RHIC) and in $p$+$p$/Pb collisions at the Large Hadron Collider. In particular, the analysis of d ata at RHIC for different geometries obtained by varying the projectile size and shape has proven insightful. In the present analysis, we find excellent agreement with the previously published PHENIX at RHIC results on elliptical and triangular flow with an independent analysis via the two-particle correlation method, which has quite different systematic uncertainties and an independent code base. In addition, the results are extended to other detector combinations with different kinematic (pseudorapidity) coverage. These results provide additional constraints on contributions from nonflow and longitudinal decorrelations.
83 - Guannan Xie 2017
Due to the large masses, heavy-flavor quarks are dominantly produced in initial hard scattering processes and experience the whole evolution of the medium produced in heavy-ion collisions at RHIC energies. They are also expected to thermalize slower than light-flavor quarks. Thus the measurement of heavy quark production and azimuthal anisotropy can provide important insights into the medium properties through their interactions with the medium. In these proceedings, we report measurements of $D^0$ production and elliptic flow ($v_2$) via topological reconstruction using STARs recently installed Heavy Flavor Tracker (HFT). The new measurement of the nuclear modification factor ($R_{AA}$) of $D^0$ mesons in central Au+Au collisions at $sqrt{s_{NN}}$ = 200 GeV confirms the strong suppression at high transverse momenta ($p_{T}$) reported in the previous publication with much improved precision. We also report the measurement of elliptic flow for $D^0$ mesons in a wide transverse momentum range in 0-80% minimum-bias Au+Au collisions. The $D^0$ elliptic flow is finite for $p_{T}$ $>$ 2 GeV/c and is systematically below that of light hadrons in the same centrality interval. Furthermore, several theoretical calculations are compared to both $R_{AA}$ and $v_2$ measurements, and the charm quark diffusion coefficient is inferred to be between 2 and $sim$12.
The azimuthal anisotropic flow of identified and unidentified charged particles has been systematically studied in Cu+Au collisions at $sqrt{s_{_{NN}}}$ = 200 GeV for harmonics $n=$ 1-4 in the pseudorapidity range $|eta|<1$. The directed flow in Cu+A u collisions is compared with the rapidity-odd and, for the first time, the rapidity-even components of charged particle directed flow in Au+Au collisions at $sqrt{s_{_{NN}}}$ = 200~GeV. The slope of the directed flow pseudorapidity dependence in Cu+Au collisions is found to be similar to that in Au+Au collisions, with the intercept shifted toward positive $eta$ values, i.e., the Cu-going direction. The mean transverse momentum projected onto the spectator plane, $langle p_xrangle$, in Cu+Au collision also exhibits approximately linear dependence on $eta$ with the intercept at about $etaapprox-0.4$, closer to the rapidity of the Cu+Au system center-of-mass. The observed dependencies find natural explanation in a picture of the directed flow originating partly due the tilted source and partly due to the rapidity dependent asymmetry in the initial density distribution. Charge-dependence of the $langle p_xrangle$ was also observed in Cu+Au collisions, indicating an effect of the initial electric field created by charge difference of the spectator protons in two colliding nuclei. The rapidity-even component of directed flow in Au+Au collisions is close to that in Pb+Pb collisions at $sqrt{s_{_{NN}}}$ = 2.76 TeV, indicating a similar magnitude of dipole-like fluctuations in the initial-state density distribution. Higher harmonic flow in Cu+Au collisions exhibits similar trends to those observed in Au+Au and Pb+Pb collisions and is qualitatively reproduced by a viscous hydrodynamic model and a multi-phase transport model. For all harmonics with $nge2$ we observe an approximate scaling of $v_n$ with the number of constituent quarks.
We present the first measurements of identified hadron production, azimuthal anisotropy, and pion interferometry from Au+Au collisions below the nominal injection energy at the Relativistic Heavy-Ion Collider (RHIC) facility. The data were collected using the large acceptance STAR detector at $sqrt{s_{NN}}$ = 9.2 GeV from a test run of the collider in the year 2008. Midrapidity results on multiplicity density (dN/dy) in rapidity (y), average transverse momentum (<pT>), particle ratios, elliptic flow, and HBT radii are consistent with the corresponding results at similar $sqrt{s_{NN}}$ from fixed target experiments. Directed flow measurements are presented for both midrapidity and forward rapidity regions. Furthermore the collision centrality dependence of identified particle dN/dy, <pT>, and particle ratios are discussed. These results also demonstrate the readiness of the STAR detector to undertake the proposed QCD critical point search and the exploration of the QCD phase diagram at RHIC.
The PHENIX collaboration at the Relativistic Heavy Ion Collider (RHIC) reports measurements of azimuthal dihadron correlations near midrapidity in $d$$+$Au collisions at $sqrt{s_{_{NN}}}$=200 GeV. These measurements complement recent analyses by expe riments at the Large Hadron Collider (LHC) involving central $p$$+$Pb collisions at $sqrt{s_{_{NN}}}$=5.02 TeV, which have indicated strong anisotropic long-range correlations in angular distributions of hadron pairs. The origin of these anisotropies is currently unknown. Various competing explanations include parton saturation and hydrodynamic flow. We observe qualitatively similar, but larger, anisotropies in $d$$+$Au collisions compared to those seen in $p$$+$Pb collisions at the LHC. The larger extracted $v_2$ values in $d$$+$Au collisions at RHIC are consistent with expectations from hydrodynamic calculations owing to the larger expected initial-state eccentricity compared with that from $p$$+$Pb collisions. When both are divided by an estimate of the initial-state eccentricity the scaled anisotropies follow a common trend with multiplicity that may extend to heavy ion data at RHIC and the LHC, where the anisotropies are widely thought to arise from hydrodynamic flow.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا