ترغب بنشر مسار تعليمي؟ اضغط هنا

Perturbative theory of the non-equilibrium singlet-triplet transition

381   0   0.0 ( 0 )
 نشر من قبل Bertalan Horv\\'ath Mr.
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study equilibrium and non-equilibrium properties of a two-level quantum dot close to the singlet-triplet transition. We treat the on-site Coulomb interaction and Hunds rule coupling perturbatively within the Keldysh formalism. We compute the spectral functions and the differential conductance of the dot. For moderate interactions our perturbative approach captures the Kondo effect and many of the experimentally observed properties.



قيم البحث

اقرأ أيضاً

We study the Coulomb-Frohlich model on a triangular lattice, looking in particular at states with angular momentum. We examine a simplified model of crab bipolarons with angular momentum by projecting onto the low energy subspace of the Coulomb-Frohl ich model with large phonon frequency. Such a projection is consistent with large long-range electron-phonon coupling and large repulsive Hubbard $U$. Significant differences are found between the band structure of singlet and triplet states: The triplet state (which has a flat band) is found to be significantly heavier than the singlet state (which has mass similar to the polaron). We test whether the heavier triplet states persist to lower electron-phonon coupling using continuous time quantum Monte Carlo (QMC) simulation. The triplet state is both heavier and larger, demonstrating that the heavier mass is due to quantum interference effects on the motion. We also find that retardation effects reduce the differences between singlet and triplet states, since they reintroduce second order terms in the hopping into the inverse effective mass.
We present neutron diffraction, magnetic susceptibility and specific heat data for a single-crystal sample of the cubic (Cu3Au structure) compound Pr3In. This compound is believed to have a singlet (Gamma1) groundstate and a low-lying triplet (Gamma4 ) excited state. In addition, nearest-neighbor antiferromagnetic interactions are frustrated in this structure. Antiferromagnetic order occurs below T_N = 12K with propagation vector (0, 0, 0.5 +/-delta) where delta approx 1/12. The neutron diffraction results can be approximated with the following model: ferromagnetic sheets from each of the three Pr sites alternate in sign along the propagation direction with a twelve-unit-cell square-wave modulation. The three moments of the unit cell of 1 mu_B magnitude are aligned so as to sum to zero as expected for nearest-neighbor antiferromagnetic interactions on a triangle. The magnetic susceptibility indicates that in addition to the antiferromagnetic transition at 12K, there is a transition near 70K below which there is a small (0.005 mu_B) ferromagnetic moment. There is considerable field and sample dependence to these transitions. The specific heat data show almost no anomaly at TN = 12K. This may be a consequence of the induced moment in the Gamma1 singlet, but may also be a sample-dependent effect.
Within the framework of periodic asymmetric Anderson model for Kondo isoulators an effective singlet-triplet Hamiltonian with indirect antiferromagnetic f-f exchange interaction is introduced which allows to study analytically the dynamic magnetic su sceptibilities of f-electrons. The approach allows to describe the three-level spin excitation spectrum with a specific dispersion in $YbB_{12}$. Distinctive feature of the consideration is the introduction of small radius singlet and triplet collective f-d excitations which at movement on a lattice form low - and high-energy spin bands.
61 - V. I. Tokar , R. Monnier 2007
A technique allowing for a perturbative treatment of nonlocal corrections to the single-site dynamical mean-field theory (DMFT) in finite dimensions is developed. It is based on the observation that in the case of strong electron correlation the one- electron Greens function is strongly spatially damped so that its intersite matrix elements may be considered as small perturbations. Because the non-local corrections are at least quadratic in these matrix elements, DMFT in such cases may be a very accurate approximation in dimensions d = 1-3. This observation provides a rigorous justification for the application of DMFT to physical systems. Furthermore, the technique allows for a systematic evaluation of the nonlocal corrections. This is illustrated with the calculation of the magnetic short range order parameter for nearest neighbor spins in the half filled Hubbard model on the square lattice in its insulating phase which exhibits an excellent agreement with the results of a recent cluster approach.As a second example we study the lowest order correction to the DMFT self-energy and its influence on the local density of states.
We analyze the highly non-perturbative regime surrounding the Mott-Hubbard metal-to-insulator transition (MIT) by means of dynamical mean field theory calculations at the two-particle level. By extending the results of Schafer, et al. [Phys. Rev. Let t. 110, 246405 (2013)] we show the existence of infinitely many lines in the phase diagram of the Hubbard model where the local Bethe-Salpeter equations, and the related irreducible vertex functions, become singular in the charge as well as the particle-particle channel. These divergence lines accumulate around the critical Mott endpoint in accordance with the interpretation as precursors of the MIT. By comparing our numerical data with analytical calculations of increasing complexity, such as for the disordered Binary Mixture and Falicov-Kimball (FK) models, as well as for the atomic limit (AL) case, (i) we identify two different kinds of divergences lines; (ii) we classify them in terms of the frequency-structure of the associated singular eigenvectors; (iii) we investigate their relation to the multiple branches in the Luttinger-Ward formalism. Moreover, we could distinguish the situations where the multiple divergences simply reflect the emergence of an underlying, unique energy scale $ u^*$ below which perturbation theory does no longer apply, from those where the breakdown of perturbation theory affects, not trivially, different energy regimes. Finally, we discuss the implications of our results on the theoretical understanding of the non-perturbative physics around the MIT and for future developments of many-body algorithms applicable in this regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا