ﻻ يوجد ملخص باللغة العربية
A technique allowing for a perturbative treatment of nonlocal corrections to the single-site dynamical mean-field theory (DMFT) in finite dimensions is developed. It is based on the observation that in the case of strong electron correlation the one-electron Greens function is strongly spatially damped so that its intersite matrix elements may be considered as small perturbations. Because the non-local corrections are at least quadratic in these matrix elements, DMFT in such cases may be a very accurate approximation in dimensions d = 1-3. This observation provides a rigorous justification for the application of DMFT to physical systems. Furthermore, the technique allows for a systematic evaluation of the nonlocal corrections. This is illustrated with the calculation of the magnetic short range order parameter for nearest neighbor spins in the half filled Hubbard model on the square lattice in its insulating phase which exhibits an excellent agreement with the results of a recent cluster approach.As a second example we study the lowest order correction to the DMFT self-energy and its influence on the local density of states.
The dynamical mean-field theory (DMFT) is a widely applicable approximation scheme for the investigation of correlated quantum many-particle systems on a lattice, e.g., electrons in solids and cold atoms in optical lattices. In particular, the combin
To explore correlated electrons in the presence of local and non-local disorder, the Blackman-Esterling-Berk method for averaging over off-diagonal disorder is implemented into dynamical mean-field theory using tensor notation. The impurity model com
Dynamical mean field methods are used to calculate the phase diagram, many-body density of states, relative orbital occupancy and Fermi surface shape for a realistic model of $LaNiO_3$-based superlattices. The model is derived from density functional
Strong electronic correlations pose one of the biggest challenges to solid state theory. We review recently developed methods that address this problem by starting with the local, eminently important correlations of dynamical mean field theory (DMFT)
Transition metal oxide heterostructures often, but by far not always, exhibit strong electronic correlations. State-of-the-art calculations account for these by dynamical mean field theory (DMFT). We discuss the physical situations in which DMFT is n