ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray optical depth diagnostics of T Tauri accretion shocks

126   0   0.0 ( 0 )
 نشر من قبل Costanza Argiroffi
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. Argiroffi




اسأل ChatGPT حول البحث

In classical T Tauri stars, X-rays are produced by two plasma components: a hot low-density plasma, with frequent flaring activity, and a high-density lower temperature plasma. The former is coronal plasma related to the stellar magnetic activity. The latter component, never observed in non-accreting stars, could be plasma heated by the shock formed by the accretion process. However its nature is still being debated. Our aim is to probe the soft X-ray emission from the high-density plasma component in classical T Tauri stars to check whether this is plasma heated in the accretion shock or whether it is coronal plasma. High-resolution X-ray spectroscopy allows us to measure individual line fluxes. We analyze X-ray spectra of the classical T Tauri stars MP Muscae and TW Hydrae. Our aim is to evaluate line ratios to search for optical depth effects, which are expected in the accretion-driven scenario. We also derive the plasma emission measure distributions EMD, to investigate whether and how the EMD of accreting and non accreting young stars differ. The results are compared to those obtained for the non-accreting weak-line T Tauri star TWA 5. We find evidence of resonance scattering in the strongest lines of MP Mus, supporting the idea that soft X-rays are produced by plasma heated in the accretion shock. We also find that the EMD of MP Mus has two peaks: a cool peak at temperatures expected for plasma heated in the accretion shock, and a hot peak typical of coronal plasma. The shape of the EMD of MP Mus appears to be the superposition of the EMD of a pure coronal source, like TWA 5, and an EMD alike that of TW Hydrae, which is instead dominated by shock-heated plasma.



قيم البحث

اقرأ أيضاً

141 - C. Argiroffi 2012
We report initial results from a quasi-simultaneous X-ray/optical observing campaign targeting V4046 Sgr, a close, synchronous-rotating classical T Tauri star (CTTS) binary in which both components are actively accreting. V4046 Sgr is a strong X-ray source, with the X-rays mainly arising from high-density (n_e ~ 10^(11-12) cm^(-3)) plasma at temperatures of 3-4 MK. Our multiwavelength campaign aims to simultaneously constrain the properties of this X-ray emitting plasma, the large scale magnetic field, and the accretion geometry. In this paper, we present key results obtained via time-resolved X-ray grating spectra, gathered in a 360 ks XMM-Newton observation that covered 2.2 system rotations. We find that the emission lines produced by this high-density plasma display periodic flux variations with a measured period, 1.22+/-0.01 d, that is precisely half that of the binary star system (2.42 d). The observed rotational modulation can be explained assuming that the high-density plasma occupies small portions of the stellar surfaces, corotating with the stars, and that the high-density plasma is not azimuthally symmetrically distributed with respect to the rotational axis of each star. These results strongly support models in which high-density, X-ray-emitting CTTS plasma is material heated in accretion shocks, located at the base of accretion flows tied to the system by magnetic field lines.
We present an XMM-Newton observation of the classical T Tauri star BP Tau. In the XMM-Newton RGS spectrum the O {sc vii} triplet is clearly detected with a very weak forbidden line indicating high plasma densities and/or a high UV flux environment. A t the same time concurrent UV data point to a small hot spot filling factor suggesting an accretion funnel shock as the site of the X-ray and UV emission. Together with the X-ray data on TW Hya these new observations suggest such funnels to be a general feature in classical T Tauri stars.
The soft X-ray emission from high density plasma in CTTS is associated with the accretion process. It is still unclear whether this high density cool plasma is heated in the accretion shock, or if it is coronal plasma fed/modified by the accretion pr ocess. We conducted a coordinated quasi-simultaneous optical and X-ray observing campaign of the CTTS V2129 Oph (Chandra/HETGS data to constrain the X-ray emitting plasma components, and optical observations to constrain the characteristics of accretion and magnetic field). We analyze a 200 ks Chandra/HETGS observation of V2129 Oph, subdivided into two 100 ks segments, corresponding to two different phases within one stellar rotation. The X-ray emitting plasma covers a wide range of temperatures: 2-34 MK. The cool plasma component of V2129 Oph varies between the two segments of the Chandra observation: high density plasma (log Ne ~ 12.1) with high EM at ~ 3-4 MK is present during the 1st segment; during the 2nd segment this plasma component has lower EM and lower density (log Ne < 11.5), although the statistical significance of these differences is marginal. Hotter plasma components, T > 10 MK, show variability on short time scales (~ 10 ks), typical of coronal plasma. A clear flare, detected in the 1st segment, could be located in a large coronal loop (> 3 Rstar). Our observation provides further confirmation that the dense cool plasma at a few MK in CTTS is material heated in the accretion shock. The variability of this cool plasma component on V2129 Oph may be explained in terms of X-rays emitted in the accretion shock and seen with different viewing angles at the two rotational phases probed by our observation. During the 1st time interval direct view of the shock region is possible, while, during the 2nd, the accretion funnel itself intersects the line of sight to the shock region, preventing us from observing accretion-driven X-rays.
242 - G. Aresu , I. Kamp , R. Meijerink 2010
Context: T Tauri stars have X-ray luminosities ranging from L_X = 10^28-10^32 erg/s. These luminosities are similar to UV luminosities (L_UV 10^30-10^31 erg/s) and therefore X-rays are expected to affect the physics and chemistry of the upper layers of their surrounding protoplanetary disks. Aim: The effects and importance of X-rays on the chemical and hydrostatic structure of protoplanetary disks are investigated, species tracing X-ray irradiation (for L_X >= 10^29 erg/s) are identified and predictions for [OI], [CII] and [NII] fine structure line fluxes are provided. Methods: We have implemented X-ray physics and chemistry into the chemo-physical disk code ProDiMo. We include Coulomb heating and H2 ionization as heating processes and primary and secondary ionization due to X-rays in the chemistry. Results: X-rays heat up the gas causing it to expand in the optically thin surface layers. Neutral molecular species are not much affected in their abundance and spatial distribution, but charged species such as N+, OH+, H2O+ and H3O+ show enhanced abundances in the disk surface. Conclusions: Coulomb heating by X-rays changes the vertical structure of the disk, yielding temperatures of ~ 8000 K out to distances of 50 AU. The chemical structure is altered by the high electron abundance in the gas in the disk surface, causing an efficient ion-molecule chemistry. The products of this, OH+, H2O+ and H3O+, are of great interest for observations of low-mass young stellar objects with the Herschel Space Observatory. [OI] (at 63 and 145 mic) and [CII] (at 158 mic) fine structure emission are only affected for L_X > 10^30 erg/s.
TWA 3A is the most recent addition to a small group of young binary systems that both actively accrete from a circumbinary disk and have spectroscopic orbital solutions. As such, it provides a unique opportunity to test binary accretion theory in a w ell-constrained setting. To examine TWA 3As time-variable accretion behavior, we have conducted a two-year, optical photometric monitoring campaign, obtaining dense orbital phase coverage (~20 observations per orbit) for ~15 orbital periods. From U-band measurements we derive the time-dependent binary mass accretion rate, finding bursts of accretion near each periastron passage. On average, these enhanced accretion events evolve over orbital phases 0.85 to 1.05, reaching their peak at periastron. The specific accretion rate increases above the quiescent value by a factor of ~4 on average but the peak can be as high as an order of magnitude in a given orbit. The phase dependence and amplitude of TWA 3A accretion is in good agreement with numerical simulations of binary accretion with similar orbital parameters. In these simulations, periastron accretion bursts are fueled by periodic streams of material from the circumbinary disk that are driven by the binary orbit. We find that TWA 3As average accretion behavior is remarkably similar to DQ Tau, another T Tauri binary with similar orbital parameters, but with significantly less variability from orbit to orbit. This is only the second clear case of orbital-phase-dependent accretion in a T Tauri binary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا