ترغب بنشر مسار تعليمي؟ اضغط هنا

Variable X-ray emission from the accretion shock in the Classical T Tauri Star V2129 Oph

194   0   0.0 ( 0 )
 نشر من قبل Costanza Argiroffi
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The soft X-ray emission from high density plasma in CTTS is associated with the accretion process. It is still unclear whether this high density cool plasma is heated in the accretion shock, or if it is coronal plasma fed/modified by the accretion process. We conducted a coordinated quasi-simultaneous optical and X-ray observing campaign of the CTTS V2129 Oph (Chandra/HETGS data to constrain the X-ray emitting plasma components, and optical observations to constrain the characteristics of accretion and magnetic field). We analyze a 200 ks Chandra/HETGS observation of V2129 Oph, subdivided into two 100 ks segments, corresponding to two different phases within one stellar rotation. The X-ray emitting plasma covers a wide range of temperatures: 2-34 MK. The cool plasma component of V2129 Oph varies between the two segments of the Chandra observation: high density plasma (log Ne ~ 12.1) with high EM at ~ 3-4 MK is present during the 1st segment; during the 2nd segment this plasma component has lower EM and lower density (log Ne < 11.5), although the statistical significance of these differences is marginal. Hotter plasma components, T > 10 MK, show variability on short time scales (~ 10 ks), typical of coronal plasma. A clear flare, detected in the 1st segment, could be located in a large coronal loop (> 3 Rstar). Our observation provides further confirmation that the dense cool plasma at a few MK in CTTS is material heated in the accretion shock. The variability of this cool plasma component on V2129 Oph may be explained in terms of X-rays emitted in the accretion shock and seen with different viewing angles at the two rotational phases probed by our observation. During the 1st time interval direct view of the shock region is possible, while, during the 2nd, the accretion funnel itself intersects the line of sight to the shock region, preventing us from observing accretion-driven X-rays.



قيم البحث

اقرأ أيضاً

193 - JF Donati , J Bouvier , FM Walter 2010
We report here the first results of a multi-wavelength campaign focussing on magnetospheric accretion processes of the classical TTauri star (cTTS) V2129Oph. In this paper, we present spectropolarimetric observations collected in 2009 July with ESPaD OnS at the Canada-France-Hawaii Telescope (CFHT). Circularly polarised Zeeman signatures are clearly detected, both in photospheric absorption and accretion-powered emission lines, from time-series of which we reconstruct new maps of the magnetic field, photospheric brightness and accretion-powered emission at the surface of V2129Oph using our newest tomographic imaging tool - to be compared with those derived from our old 2005 June data set, reanalyzed in the exact same way. We find that in 2009 July, V2129Oph hosts octupolar & dipolar field components of about 2.1 & 0.9kG respectively, both tilted by about 20deg with respect to the rotation axis; we conclude that the large-scale magnetic topology changed significantly since 2005 June (when the octupole and dipole components were about 1.5 and 3 times weaker respectively), demonstrating that the field of V2129Oph is generated by a non-stationary dynamo. We also show that V2129Oph features a dark photospheric spot and a localised area of accretion-powered emission, both close to the main surface magnetic region (hosting fields of up to about 4kG in 2009 July). We finally obtain that the surface shear of V2129Oph is about half as strong as solar. From the fluxes of accretion-powered emission lines, we estimate that the observed average logarithmic accretion rate (in Msun/yr) at the surface of V2129Oph is -9.2+-0.3 at both epochs, peaking at -9.0 at magnetic maximum. It implies in particular that the radius at which the magnetic field of V2129Oph truncates the inner accretion disc is 0.93x and 0.50x the corotation radius in 2009 July and 2005 June respectively.
From observations collected with the ESPaDOnS spectropolarimeter, we report the discovery of magnetic fields at the surface of the mildly accreting classical T Tauri star V2129 Oph. Zeeman signatures are detected, both in photospheric lines and in th e emission lines formed at the base of the accretion funnels linking the disc to the protostar, and monitored over the whole rotation cycle of V2129 Oph. We observe that rotational modulation dominates the temporal variations of both unpolarized and circularly polarized line profiles. We reconstruct the large-scale magnetic topology at the surface of V2129 Oph from both sets of Zeeman signatures simultaneously. We find it to be rather complex, with a dominant octupolar component and a weak dipole of strengths 1.2 and 0.35 kG, respectively, both slightly tilted with respect to the rotation axis. The large-scale field is anchored in a pair of 2-kG unipolar radial field spots located at high latitudes and coinciding with cool dark polar spots at photospheric level. This large-scale field geometry is unusually complex compared to those of non-accreting cool active subgiants with moderate rotation rates. As an illustration, we provide a first attempt at modelling the magnetospheric topology and accretion funnels of V2129 Oph using field extrapolation. We find that the magnetosphere of V2129 Oph must extend to about 7R* to ensure that the footpoints of accretion funnels coincide with the high-latitude accretion spots on the stellar surface. It suggests that the stellar magnetic field succeeds in coupling to the accretion disc as far out as the corotation radius, and could possibly explain the slow rotation of V2129 Oph. The magnetospheric geometry we derive produces X-ray coronal fluxes typical of those observed in cTTSs.
Classical T Tauri stars are young low-mass systems still accreting material from their disks. These systems are dynamic on timescales of hours to years. The observed variability can help us infer the physical processes that occur in the circumstellar environment. We aim at understanding the dynamics of the magnetic interaction between the star and the inner accretion disk in young stellar objects. We present the case of the young stellar system V2129 Oph, which is a well-known T Tauri star. We performed a time series analysis of this star using high-resolution spectroscopic data at optical and infrared wavelengths from CFHT/ESPaDOnS, ESO/HARPS and CFHT/SPIRou. The new data sets allowed us to characterize the accretion-ejection structure in this system and to investigate its evolution over a timescale of a decade via comparisons to previous observational data. We measure radial velocity variations and recover a stellar rotation period of 6.53d. However, we do not recover the stellar rotation period in the variability of various circumstellar lines, such as H$alpha$ and H$beta$ in the optical or HeI 1083nm and Pa$beta$ in the infrared. Instead, we show that the optical and infrared line profile variations are consistent with a magnetospheric accretion scenario that shows variability with a period of about 6.0d, shorter than the stellar rotation period. Additionally, we find a period of 8.5d in H$alpha$ and H$beta$ lines, probably due to a structure located beyond the corotation radius, at a distance of 0.09au. We investigate whether this could be accounted for by a wind component, twisted or multiple accretion funnel flows, or an external disturbance in the inner disk. We conclude that the dynamics of the accretion-ejection process can vary significantly on a timescale of just a few years, presumably reflecting the evolving magnetic field topology at the stellar surface.
We study the properties of X-ray emitting plasma of MP Mus, an old classical T Tauri star. We aim at checking whether an accretion process produces the observed X-ray emission and at deriving the accretion parameters and the characteristics of the sh ock-heated plasma. We compare the properties of MP Mus with those of younger classical T Tauri stars to test whether age is related to the properties of the X-ray emission plasma. XMM-Newton X-ray spectra allows us to measure plasma temperatures, abundances, and electron density. In particular the density of cool plasma probes whether X-ray emission is produced by plasma heated in the accretion process. X-ray emission from MP Mus originates from high density cool plasma but a hot flaring component is also present, suggesting that both coronal magnetic activity and accretion contribute to the observed X-ray emission. We find a Ne/O ratio similar to that observed in the much younger classical T Tauri star BP Tau. From the soft part of the X-ray emission, mostly produced by plasma heated in the accretion shock, we derive a mass accretion rate of 5x10^{-11} M_{sun} yr^{-1}.
137 - C. Argiroffi 2012
We report initial results from a quasi-simultaneous X-ray/optical observing campaign targeting V4046 Sgr, a close, synchronous-rotating classical T Tauri star (CTTS) binary in which both components are actively accreting. V4046 Sgr is a strong X-ray source, with the X-rays mainly arising from high-density (n_e ~ 10^(11-12) cm^(-3)) plasma at temperatures of 3-4 MK. Our multiwavelength campaign aims to simultaneously constrain the properties of this X-ray emitting plasma, the large scale magnetic field, and the accretion geometry. In this paper, we present key results obtained via time-resolved X-ray grating spectra, gathered in a 360 ks XMM-Newton observation that covered 2.2 system rotations. We find that the emission lines produced by this high-density plasma display periodic flux variations with a measured period, 1.22+/-0.01 d, that is precisely half that of the binary star system (2.42 d). The observed rotational modulation can be explained assuming that the high-density plasma occupies small portions of the stellar surfaces, corotating with the stars, and that the high-density plasma is not azimuthally symmetrically distributed with respect to the rotational axis of each star. These results strongly support models in which high-density, X-ray-emitting CTTS plasma is material heated in accretion shocks, located at the base of accretion flows tied to the system by magnetic field lines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا