ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-equilibrium dynamics of quantum systems: order parameter evolution, defect generation, and qubit transfer

128   0   0.0 ( 0 )
 نشر من قبل Diptiman Sen
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this review, we study some aspects of the non-equilibrium dynamics of quantum systems. In particular, we consider the effect of varying a parameter in the Hamiltonian of a quantum system which takes it across a quantum critical point or line. We study both sudden and slow quenches in a variety of systems including one-dimensional ultracold atoms in an optical lattice, an infinite range ferromagnetic Ising model, and some exactly solvable spin models in one and two dimensions (such as the Kitaev model). We show that quenching leads to the formation of defects whose density has a power-law dependence on the quenching rate; the power depends on the dimensionalities of the system and of the critical surface and on some of the exponents associated with the critical point which is being crossed. We also study the effect of non-linear quenching; the power law of the defects then depends on the degree of non-linearity. Finally, we study some spin-1/2 models to discuss how a qubit can be transferred across a system.



قيم البحث

اقرأ أيضاً

We study quantum transport after an inhomogeneous quantum quench in a free fermion lattice system in the presence of a localised defect. Using a new rigorous analytical approach for the calculation of large time and distance asymptotics of physical o bservables, we derive the exact profiles of particle density and current. Our analysis shows that the predictions of a semiclassical approach that has been extensively applied in similar problems match exactly with the correct asymptotics, except for possible finite distance corrections close to the defect. We generalise our formulas to an arbitrary non-interacting particle-conserving defect, expressing them in terms of its scattering properties.
We provide systematic analysis on a non-Hermitian PT -symmetric quantum impurity system both in and out of equilibrium, based on exact computations. In order to understand the interplay between non-Hermiticity and Kondo physics, we focus on a prototy pical noninteracting impurity system, the resonant level model, with complex coupling constants. Explicitly constructing biorthogonal basis, we study its thermodynamic properties as well as the Loschmidt echo starting from the initially disconnected two free fermion chains. Remarkably, we observe the universal crossover physics in the Loschmidt echo, both in the PT broken and unbroken regimes. We also find that the ground state quantities we compute in the PT broken regime can be obtained by analytic continuation. It turns out that Kondo screening ceases to exist in the PT broken regime, which was also previously predicted in the non-hermitian Kondo model. All the analytical results are corroborated against biorthogonal free fermion numerics.
Simulating the dynamics of a nonequilibrium quantum many-body system by computing the two-time Greens function associated with such a system is computationally challenging. However, we are often interested in the time diagonal of such a Greens functi on or time dependent physical observables that are functions of one time. In this paper, we discuss the possibility of using dynamic model decomposition (DMD), a data-driven model order reduction technique, to characterize one-time observables associated with the nonequilibrium dynamics using snapshots computed within a small time window. The DMD method allows us to efficiently predict long time dynamics from a limited number of trajectory samples. We demonstrate the effectiveness of DMD on a model two-band system. We show that, in the equilibrium limit, the DMD analysis yields results that are consistent with those produced from a linear response analysis. In the nonequilibrium case, the extrapolated dynamics produced by DMD is more accurate than a special Fourier extrapolation scheme presented in this paper. We point out a potential pitfall of the standard DMD method caused by insufficient spatial/momentum resolution of the discretization scheme. We show how this problem can be overcome by using a variant of the DMD method known as higher order DMD.
Equilibrium is a rather ideal situation, the exception rather than the rule in Nature. Whenever the external or internal parameters of a physical system are varied its subsequent relaxation to equilibrium may be either impossible or take very long ti mes. From the point of view of fundamental physics no generic principle such as the ones of thermodynamics allows us to fully understand their behaviour. The alternative is to treat each case separately. It is illusionary to attempt to give, at least at this stage, a complete description of all non-equilibrium situations. Still, one can try to identify and characterise some concrete but still general features of a class of out of equilibrium problems - yet to be identified - and search for a unified description of these. In this report I briefly describe the behaviour and theory of a set of non-equilibrium systems and I try to highlight common features and some general laws that have emerged in recent years.
When a second-order phase transition is crossed at fine rate, the evolution of the system stops being adiabatic as a result of the critical slowing down in the neighborhood of the critical point. In systems with a topologically nontrivial vacuum mani fold, disparate local choices of the ground state lead to the formation of topological defects. The universality class of the transition imprints a signature on the resulting density of topological defects: It obeys a power law in the quench rate, with an exponent dictated by a combination of the critical exponents of the transition. In inhomogeneous systems the situation is more complicated, as the spontaneous symmetry breaking competes with bias caused by the influence of the nearby regions that already chose the new vacuum. As a result, the choice of the broken symmetry vacuum may be inherited from the neighboring regions that have already entered the new phase. This competition between the inherited and spontaneous symmetry breaking enhances the role of causality, as the defect formation is restricted to a fraction of the system where the front velocity surpasses the relevant sound velocity and phase transition remains effectively homogeneous. As a consequence, the overall number of topological defects can be substantially suppressed. When the fraction of the system is small, the resulting total number of defects is still given by a power law related to the universality class of the transition, but exhibits a more pronounced dependence on the quench rate. This enhanced dependence complicates the analysis but may also facilitate experimental test of defect formation theories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا