ﻻ يوجد ملخص باللغة العربية
Simulating the dynamics of a nonequilibrium quantum many-body system by computing the two-time Greens function associated with such a system is computationally challenging. However, we are often interested in the time diagonal of such a Greens function or time dependent physical observables that are functions of one time. In this paper, we discuss the possibility of using dynamic model decomposition (DMD), a data-driven model order reduction technique, to characterize one-time observables associated with the nonequilibrium dynamics using snapshots computed within a small time window. The DMD method allows us to efficiently predict long time dynamics from a limited number of trajectory samples. We demonstrate the effectiveness of DMD on a model two-band system. We show that, in the equilibrium limit, the DMD analysis yields results that are consistent with those produced from a linear response analysis. In the nonequilibrium case, the extrapolated dynamics produced by DMD is more accurate than a special Fourier extrapolation scheme presented in this paper. We point out a potential pitfall of the standard DMD method caused by insufficient spatial/momentum resolution of the discretization scheme. We show how this problem can be overcome by using a variant of the DMD method known as higher order DMD.
Machine learning (ML) architectures such as convolutional neural networks (CNNs) have garnered considerable recent attention in the study of quantum many-body systems. However, advanced ML approaches such as transfer learning have seldom been applied
We introduce a family of non-integrable 1D lattice models that feature robust periodic revivals under a global quench from certain initial product states, thus generalizing the phenomenon of many-body scarring recently observed in Rydberg atom quantu
We propose a non-linear, hybrid quantum-classical scheme for simulating non-equilibrium dynamics of strongly correlated fermions described by the Hubbard model in a Bethe lattice in the thermodynamic limit. Our scheme implements non-equilibrium dynam
Contrary to the conventional wisdom in Hermitian systems, a continuous quantum phase transition between gapped phases is shown to occur without closing the energy gap $Delta$ in non-Hermitian quantum many-body systems. Here, the relevant length scale
Modeling many-body quantum systems with strong interactions is one of the core challenges of modern physics. A range of methods has been developed to approach this task, each with its own idiosyncrasies, approximations, and realm of applicability. Pe