ﻻ يوجد ملخص باللغة العربية
We investigate the star formation history of the universe using FIREWORKS, a multiwavelength survey of the CDFS. We study the evolution of the specific star formation rate (sSFR) with redshift in different mass bins from z = 0 to z ~ 3. We find that the sSFR increases with redshift for all masses. The logarithmic increase of the sSFR with redshift is nearly independent of mass, but this cannot yet be verified at the lowest-mass bins at z > 0.8, due to incompleteness. We convert the sSFRs to a dimensionless growth rate to facilitate a comparison with a semi-analytic galaxy formation model that was implemented on the Millennium Simulation. The model predicts that the growth rates and sSFRs increase similarly with redshift for all masses, consistent with the observations. However, we find that for all masses, the inferred observed growth rates increase more rapidly with redshift than the model predictions. We discuss several possible causes for this discrepancy, ranging from field-to-field variance,
We present observations and dynamical models of the stellar nuclear clusters (NCs) at the centres of NGC 4244 and M33. We then compare these to an extensive set of simulations testing the importance of purely stellar dynamical mergers on the formatio
[abridged] It has been widely claimed that several lines of observational evidence point towards a downsizing (DS) of the process of galaxy formation over cosmic time. This behavior is sometimes termed anti-hierarchical, and contrasted with the botto
In this review we focus on the role jets and outflows play in the star and planet formation process. Our essential question can be posed as follows: are jets/outflows merely an epiphenomenon associated with star formation or do they play an important
In order to trace the instantaneous star formation rate at high redshift, and hence help understanding the relation between the different emission mechanisms related to star formation, we combine the recent 4 Ms Chandra X-ray data and the deep VLA ra
[Abridged] We use the large public spectroscopic database available in the GOODS-South field to estimate the dynamical mass and the virialization status of cluster ClG 0332-2747 at z=0.734. Cluster members selected from their photometric redshift are