ترغب بنشر مسار تعليمي؟ اضغط هنا

The Many Manifestations of Downsizing: Hierarchical Galaxy Formation Models confront Observations

244   0   0.0 ( 0 )
 نشر من قبل Fabio Fontanot
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Fabio Fontanot




اسأل ChatGPT حول البحث

[abridged] It has been widely claimed that several lines of observational evidence point towards a downsizing (DS) of the process of galaxy formation over cosmic time. This behavior is sometimes termed anti-hierarchical, and contrasted with the bottom-up assembly of the dark matter structures in Cold Dark Matter models. In this paper we address three different kinds of observational evidence that have been described as DS: the stellar mass assembly, star formation rate and the ages of the stellar populations in local galaxies. We compare a broad compilation of available data-sets with the predictions of three different semi-analytic models of galaxy formation within the Lambda-CDM framework. In the data, we see only weak evidence at best of DS in stellar mass and in star formation rate. We find that, when observational errors on stellar mass and SFR are taken into account, the models acceptably reproduce the evolution of massive galaxies, over the entire redshift range that we consider. However, lower mass galaxies are formed too early in the models and are too passive at late times. Thus, the models do not correctly reproduce the DS trend in stellar mass or the archaeological DS, while they qualitatively reproduce the mass-dependent evolution of the SFR. We demonstrate that these discrepancies are not solely due to a poor treatment of satellite galaxies but are mainly connected to the excessively efficient formation of central galaxies in high-redshift haloes with circular velocities ~100-200 km/s. [abridged]



قيم البحث

اقرأ أيضاً

We investigate the star formation history of the universe using FIREWORKS, a multiwavelength survey of the CDFS. We study the evolution of the specific star formation rate (sSFR) with redshift in different mass bins from z = 0 to z ~ 3. We find that the sSFR increases with redshift for all masses. The logarithmic increase of the sSFR with redshift is nearly independent of mass, but this cannot yet be verified at the lowest-mass bins at z > 0.8, due to incompleteness. We convert the sSFRs to a dimensionless growth rate to facilitate a comparison with a semi-analytic galaxy formation model that was implemented on the Millennium Simulation. The model predicts that the growth rates and sSFRs increase similarly with redshift for all masses, consistent with the observations. However, we find that for all masses, the inferred observed growth rates increase more rapidly with redshift than the model predictions. We discuss several possible causes for this discrepancy, ranging from field-to-field variance,
113 - Han-Seek Kim 2010
The distribution of cold gas in dark matter haloes is driven by key processes in galaxy formation: gas cooling, galaxy mergers, star formation and reheating of gas by supernovae. We compare the predictions of four different galaxy formation models fo r the spatial distribution of cold gas. We find that satellite galaxies make little contribution to the abundance or clustering strength of cold gas selected samples, and are far less important than they are in optically selected samples. The halo occupation distribution function of present-day central galaxies with cold gas mass > 10^9 h^-1 Msun is peaked around a halo mass of ~ 10^11 h^-1 Msun, a scale that is set by the AGN suppression of gas cooling. The model predictions for the projected correlation function are in good agreement with measurements from the HI Parkes All-Sky Survey. We compare the effective volume of possible surveys with the Square Kilometre Array with those expected for a redshift survey in the near-infrared. Future redshift surveys using neutral hydrogen emission will be competitive with the most ambitious spectroscopic surveys planned in the near-infrared.
We compare state-of-the-art semi-analytic models of galaxy formation as well as advanced sub-halo abundance matching models with a large sample of early-type galaxies from SDSS at z < 0.3. We focus our attention on the dependence of median sizes of c entral galaxies on host halo mass. The data do not show any difference in the structural properties of early-type galaxies with environment, at fixed stellar mass. All hierarchical models considered in this work instead tend to predict a moderate to strong environmental dependence, with the median size increasing by a factor of about 1.5-3 when moving from low to high mass host haloes. At face value the discrepancy with the data is highly significant, especially at the cluster scale, for haloes above log Mhalo > 14. The convolution with (correlated) observational errors reduces some of the tension. Despite the observational uncertainties, the data tend to disfavour hierarchical models characterized by a relevant contribution of disc instabilities to the formation of spheroids, strong gas dissipation in (major) mergers, short dynamical friction timescales, and very short quenching timescales in infalling satellites. We also discuss a variety of additional related issues, such as the slope and scatter in the local size-stellar mass relation, the fraction of gas in local early-type galaxies, and the general predictions on satellite galaxies.
143 - Juan E. Gonzalez 2010
We study the role of submillimetre galaxies (SMGs) in the galaxy formation process in the Lambda Cold Dark Matter cosmology. We use the Baugh et al. (2005) semi-analytical model, which matches the observed SMG number counts and redshift distribution by assuming a top-heavy initial mass function (IMF) in bursts triggered by galaxy mergers. We build galaxy merger trees and follow the evolution and properties of SMGs and their descendants. Our primary sample of model SMGs consists of galaxies which had 850 mu fluxes brighter than 5 mJy at some redshift z>1. Our model predicts that the present-day descendants of such SMGs cover a wide range of stellar masses ~ 10^{10} - 10^{12} Msun/h, with a median ~ 10^{11} Msun/h, and that more than 70% of these descendants are bulge-dominated. More than 50% of present day galaxies with stellar masses larger than 7 x 10^{11} Msun/h are predicted to be descendants of such SMGs. We find that although SMGs make an important contribution to the total star formation rate at z~2, the final stellar mass produced in the submillimetre phase contributes only 0.2% of the total present-day stellar mass, and 2% of the stellar mass of SMG descendants, in stark contrast to the popular picture in which the SMG phase marks the production of the bulk of the mass of present day massive ellipticals.
In this study, we have carried out a detailed, statistical analysis of isolated model galaxies, taking advantage of publicly available hierarchical galaxy formation models. To select isolated galaxies, we employ 2D methods widely used in the observat ional literature, as well as a more stringent 3D isolation criterion that uses the full 3D-real space information. In qualitative agreement with observational results, isolated model galaxies have larger fractions of late-type, star forming galaxies with respect to randomly selected samples of galaxies with the same mass distribution. We also find that the samples of isolated model galaxies typically contain a fraction of less than 15 per cent of satellite galaxies, that reside at the outskirts of their parent haloes where the galaxy number density is low. Projection effects cause a contamination of 2D samples of about 18 per cent, while we estimate a typical completeness of 65 per cent. Our model isolated samples also include a very small (few per cent) fraction of bulge dominated galaxies (B/T > 0.8) whose bulges have been built mainly by minor mergers. Our study demonstrates that about 65-70 per cent of 2D isolated galaxies that are classified as isolated at z = 0 have indeed been completely isolated since z = 1 and only 7 per cent have had more than 3 neighbours within a comoving radius of 1 Mpc. Irrespectively of the isolation criteria, roughly 45 per cent of isolated galaxies have experienced at least one merger event in the past (most of the mergers are minor, with mass ratios between 1:4 and 1:10). The latter point validates the approximation that isolated galaxies have been mainly influenced by internal processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا