ترغب بنشر مسار تعليمي؟ اضغط هنا

The PULSE@Parkes project: A new observing technique for long-term pulsar monitoring

219   0   0.0 ( 0 )
 نشر من قبل George Hobbs
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The PULSE@Parkes project has been designed to monitor the rotation of radio pulsars over time spans of days to years. The observations are obtained using the Parkes 64-m and 12-m radio telescopes by Australian and international high school students. These students learn the basis of radio astronomy and undertake small projects with their observations. The data are fully calibrated and obtained with the state-of-the-art pulsar hardware available at Parkes. The final data sets are archived and are currently being used to carry out studies of 1) pulsar glitches, 2) timing noise, 3) pulse profile stability over long time scales and 4) the extreme nulling phenomenon. The data are also included in other projects such as gamma-ray observatory support and for the Parkes Pulsar Timing Array project. In this paper we describe the current status of the project and present the first scientific results from the Parkes 12-m radio telescope. We emphasise that this project offers a straightforward means to enthuse high school students and the general public about radio astronomy while obtaining scientifically valuable data sets.



قيم البحث

اقرأ أيضاً

188 - R. N. Manchester 2012
A pulsar timing array (PTA), in which observations of a large sample of pulsars spread across the celestial sphere are combined, allows investigation of global phenomena such as a background of gravitational waves or instabilities in atomic timescale s that produce correlated timing residuals in the pulsars of the array. The Parkes Pulsar Timing Array (PPTA) is an implementation of the PTA concept based on observations with the Parkes 64-m radio telescope. A sample of 20 millisecond pulsars is being observed at three radio-frequency bands, 50cm (~700 MHz), 20cm (~1400 MHz) and 10cm (~3100 MHz), with observations at intervals of 2 - 3 weeks. Regular observations commenced in early 2005. This paper describes the systems used for the PPTA observations and data processing, including calibration and timing analysis. The strategy behind the choice of pulsars, observing parameters and analysis methods is discussed. Results are presented for PPTA data in the three bands taken between 2005 March and 2011 March. For ten of the 20 pulsars, rms timing residuals are less than 1 microsec for the best band after fitting for pulse frequency and its first time derivative. Significant red timing noise is detected in about half of the sample. We discuss the implications of these results on future projects including the International Pulsar Timing Array (IPTA) and a PTA based on the Square Kilometre Array. We also present an extended PPTA data set that combines PPTA data with earlier Parkes timing data for these pulsars.
170 - M. Kerr , D. J. Reardon , G. Hobbs 2020
We describe 14 years of public data from the Parkes Pulsar Timing Array (PPTA), an ongoing project that is producing precise measurements of pulse times of arrival from 26 millisecond pulsars using the 64-m Parkes radio telescope with a cadence of ap proximately three weeks in three observing bands. A comprehensive description of the pulsar observing systems employed at the telescope since 2004 is provided, including the calibration methodology and an analysis of the stability of system components. We attempt to provide full accounting of the reduction from the raw measured Stokes parameters to pulse times of arrival to aid third parties in reproducing our results. This conversion is encapsulated in a processing pipeline designed to track provenance. Our data products include pulse times of arrival for each of the pulsars along with an initial set of pulsar parameters and noise models. The calibrated pulse profiles and timing template profiles are also available. These data represent almost 21,000 hrs of recorded data spanning over 14 years. After accounting for processes that induce time-correlated noise, 22 of the pulsars have weighted root-mean-square timing residuals of < 1 ${mu}$s in at least one radio band. The data should allow end users to quickly undertake their own gravitational-wave analyses (for example) without having to understand the intricacies of pulsar polarisation calibration or attain a mastery of radio-frequency interference mitigation as is required when analysing raw data files.
In 2004, McLaughlin et al. discovered a phenomenon in the radio emission of PSR J0737-3039B (B) that resembles drifting sub-pulses. The repeat rate of the sub-pulses is equal to the spin frequency of PSR J0737-3039A (A); this led to the suggestion th at they are caused by incidence upon Bs magnetosphere of electromagnetic radiation from A. Here we describe a geometrical model which predicts the delay of Bs sub-pulses relative to As radio pulses. We show that measuring these delays is equivalent to tracking As rotation from the point of view of an hypothetical observer located near B. This has three main astrophysical applications: (a) to determine the sense of rotation of A relative to its orbital plane; (b) to estimate where in Bs magnetosphere the radio sub-pulses are modulated and (c) to provide an independent estimate of the mass ratio of A and B. The latter might improve existing tests of gravitational theories using this system.
175 - J. L. Chen , H. G. Wang , N. Wang 2011
The mode switching phenomenon of PSR B0329+54 is investigated based on the long-term monitoring from September 2003 to April 2009 made with the Urumqi 25m radio telescope at 1540 MHz. At that frequency, the change of relative intensity between the le ading and trailing components is the predominant feature of mode switching. The intensity ratios between the leading and trailing components are measured for the individual profiles averaged over a few minutes. It is found that the ratios follow normal distributions, where the abnormal mode has a wider typical width than the normal mode, indicating that the abnormal mode is less stable than the normal mode. Our data show that 84.9% of the time for PSR B0329+54 was in the normal mode and 15.1% was in the abnormal mode. From the two passages of eight-day quasi-continuous observations in 2004, and supplemented by the daily data observed with 15 m telescope at 610 MHz at Jodrell Bank Observatory, the intrinsic distributions of mode timescales are constrained with the Bayesian inference method. It is found that the gamma distribution with the shape parameter slightly smaller than 1 is favored over the normal, lognormal and Pareto distributions. The optimal scale parameters of the gamma distribution is 31.5 minutes for the abnormal mode and 154 minutes for the normal mode. The shape parameters have very similar values, i.e. 0.75^{+0.22}_{-0.17} for the normal mode and 0.84^{+0.28}_{-0.22} for the abnormal mode, indicating the physical mechanisms in both modes may be the same. No long-term modulation of the relative intensity ratios was found for both the modes, suggesting that the mode switching was stable. The intrinsic timescale distributions, for the first time constrained for this pulsar, provide valuable information to understand the physics of mode switching.
The T35 is a small telescope (14) equipped with a large format CCD camera installed in the Sierra Nevada Observatory (SNO) in Southern Spain. This telescope will be a useful tool for the detecting and studying pulsating stars, particularly, in open c lusters. In this paper, we describe the automation process of the T35 and show also some images taken with the new instrumentation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا