ﻻ يوجد ملخص باللغة العربية
The PULSE@Parkes project has been designed to monitor the rotation of radio pulsars over time spans of days to years. The observations are obtained using the Parkes 64-m and 12-m radio telescopes by Australian and international high school students. These students learn the basis of radio astronomy and undertake small projects with their observations. The data are fully calibrated and obtained with the state-of-the-art pulsar hardware available at Parkes. The final data sets are archived and are currently being used to carry out studies of 1) pulsar glitches, 2) timing noise, 3) pulse profile stability over long time scales and 4) the extreme nulling phenomenon. The data are also included in other projects such as gamma-ray observatory support and for the Parkes Pulsar Timing Array project. In this paper we describe the current status of the project and present the first scientific results from the Parkes 12-m radio telescope. We emphasise that this project offers a straightforward means to enthuse high school students and the general public about radio astronomy while obtaining scientifically valuable data sets.
A pulsar timing array (PTA), in which observations of a large sample of pulsars spread across the celestial sphere are combined, allows investigation of global phenomena such as a background of gravitational waves or instabilities in atomic timescale
We describe 14 years of public data from the Parkes Pulsar Timing Array (PPTA), an ongoing project that is producing precise measurements of pulse times of arrival from 26 millisecond pulsars using the 64-m Parkes radio telescope with a cadence of ap
In 2004, McLaughlin et al. discovered a phenomenon in the radio emission of PSR J0737-3039B (B) that resembles drifting sub-pulses. The repeat rate of the sub-pulses is equal to the spin frequency of PSR J0737-3039A (A); this led to the suggestion th
The mode switching phenomenon of PSR B0329+54 is investigated based on the long-term monitoring from September 2003 to April 2009 made with the Urumqi 25m radio telescope at 1540 MHz. At that frequency, the change of relative intensity between the le
The T35 is a small telescope (14) equipped with a large format CCD camera installed in the Sierra Nevada Observatory (SNO) in Southern Spain. This telescope will be a useful tool for the detecting and studying pulsating stars, particularly, in open c