ترغب بنشر مسار تعليمي؟ اضغط هنا

Suzaku Observation of the Diffuse X-Ray Emission from the Open Cluster Westerlund 2: a Hypernova Remnant?

139   0   0.0 ( 0 )
 نشر من قبل Yutaka Fujita
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the analysis of Suzaku observations of the young open cluster Westerlund 2, which is filled with diffuse X-ray emission. We found that the emission consists of three thermal components or two thermal and one non-thermal components. The upper limit of the energy flux of the non-thermal component is smaller than that in the TeV band observed with H.E.S.S. This may indicate that active particle acceleration has stopped in this cluster, and that the accelerated electrons have already cooled. The gamma-ray emission observed with H.E.S.S. is likely to come from high-energy protons, which hardly cool in contrast with electrons. Metal abundances of the diffuse X-ray gas may indicate the explosion of a massive star in the past.



قيم البحث

اقرأ أيضاً

A southwest region of the Carina nebula was observed with the Suzaku observatory for 47 ks in 2010 December. This region shows distinctively soft X-ray emission in the Chandra campaign observations. Suzaku clearly detects the diffuse emission above k nown foreground and background components between 0.4-5 keV at the surface brightness of 3.3x10^-14 erg s^{-1} arcmin^{-2}. The spectrum requires two plasma emission components with kT~0.2 and 0.5 keV, which suffer interstellar absorption of N_H~1.9x10^{21} cm^{-2}. Multiple absorption models assuming two temperature plasmas at ionization equilibrium or non-equilibrium are tested but there is no significant difference in terms of chi^2/d.o.f.. These plasma temperatures are similar to those of the central and eastern parts of the Carina nebula measured in earlier Suzaku observations, but the surface brightness of the hot component is significantly lower than those of the other regions. This means that these two plasma components are physically separated and have different origins. The elemental abundances of O, Ne and Mg with respect to Fe favor that the diffuse plasma originates from core-collapsed supernovae or massive stellar winds.
We present the diffuse X-ray emission identified in Chandra observations of the young, massive Galactic star cluster Westerlund 1. After removing point-like X-ray sources down to a completeness limit of 2e31 erg/s, we identify 3e34 erg/s (2--8 keV) o f diffuse emission. The spatial distribution of the emission can be described as a slightly-elliptical Lorentzian core with a half-width half-maximum along the major axis of 25+/-1, similar to the distribution of point sources in the cluster, plus a 5 halo of extended emission. The spectrum of the diffuse emission is dominated by a hard continuum component that can be described as a kT>3 keV thermal plasma that has a low iron abundance (<0.3 solar), or as non-thermal emission that could be stellar light that is inverse-Compton scattered by MeV electrons. Only 5% of the flux is produced by a kT=0.7 keV plasma. The low luminosity of the thermal emission and the lack of a 6.7 keV iron line suggests that <40,000 unresolved stars with masses between 0.3 and 2 Msun are present in the cluster. Moreover, the flux in the diffuse emission is a factor of two lower than would be expected from a supersonically-expanding cluster wind, and there is no evidence for thermal remnants produced by supernovae. Less than 1e-5 of the mechanical luminosity of the cluster is dissipated as 2--8 keV X-rays, leaving a large amount of energy that either is radiated at other wavelengths, is dissipated beyond the bounds of our image, or escapes into the intergalactic medium.
103 - Aya Bamba 2016
We present the first dedicated X-ray study of the supernova remnant (SNR) G32.8-0.1 (Kes 78) with Suzaku. X-ray emission from the whole SNR shell has been detected for the first time. The X-ray morphology is well correlated with the emission from the radio shell, while anti-correlated with the molecular cloud found in the SNR field. The X-ray spectrum shows not only conventional low-temperature (kT ~ 0.6 keV) thermal emission in a non-equilibrium ionization state, but also a very high temperature (kT ~ 3.4 keV) component with a very low ionization timescale (~ 2.7e9 cm^{-3}s), or a hard non-thermal component with a photon index Gamma~2.3. The average density of the low-temperature plasma is rather low, of the order of 10^{-3}--10^{-2} cm^{-3}, implying that this SNR is expanding into a low-density cavity. We discuss the X-ray emission of the SNR, also detected in TeV with H.E.S.S., together with multi-wavelength studies of the remnant and other gamma-ray emitting SNRs, such as W28 and RCW 86. Analysis of a time-variable source, 2XMM J185114.3-000004, found in the northern part of the SNR, is also reported for the first time. Rapid time variability and a heavily absorbed hard X-ray spectrum suggest that this source could be a new supergiant fast X-ray transient.
150 - J.Kataoka , M.Tahara , T.Totani 2013
We present Suzaku X-ray observations along two edge regions of the Fermi Bubbles, with eight ~20 ksec pointings across the northern part of the North Polar Spur (NPS) surrounding the north bubble and six across the southernmost edge of the south bubb le. After removing compact X-ray features, diffuse X-ray emission is clearly detected and is well reproduced by a three-component spectral model consisting of unabsorbed thermal emission (temperature kT ~0.1 keV from the Local Bubble (LB), absorbed kT ~0.3 keV thermal emission related to the NPS and/or Galactic Halo (GH), and a power-law component at a level consistent with the cosmic X-ray background. The emission measure (EM) of the 0.3 keV plasma decreases by ~50% toward the inner regions of the north-east bubble, with no accompanying temperature change. However, such a jump in the EM is not clearly seen in the south bubble data. While it is unclear if the NPS originates from a nearby supernova remnant or is related to previous activity within/around the Galactic Center, our Suzaku observations provide evidence suggestive of the latter scenario. In the latter framework, the presence of a large amount of neutral matter absorbing the X-ray emission as well as the existence of the kT ~ 0.3 keV gas can be naturally interpreted as a weak shock driven by the bubbles expansion in the surrounding medium, with velocity v_exp ~300 km/s (corresponding to shock Mach number M ~1.5), compressing the GH gas to form the NPS feature. We also derived an upper limit for any non-thermal X-ray emission component associated with the bubbles and demonstrate, that in agreement with the findings above, the non-thermal pressure and energy estimated from a one-zone leptonic model of its broad-band spectrum, are in rough equilibrium with that of the surrounding thermal plasma.
We present the results from Suzaku observations of the hottest Abell galaxy cluster A2163 at $z=0.2$. To study the physics of gas heating in cluster mergers, we investigated hard X-ray emission from the merging cluster A2163, which hosts the brightes t synchrotron radio halo. We analyzed hard X-ray spectra accumulated from two-pointed Suzaku observations. Non-thermal hard X-ray emission should result from the inverse Compton (IC) scattering of relativistic electrons by the CMB photons. To measure this emission, the dominant thermal emission in the hard X-ray band must be modeled in detail. To this end, we analyzed the combined broad-band X-ray data of A2163 collected by Suzaku and XMM-Newton, assuming single- and multi-temperature models for thermal emission and the power-law model for non-thermal emission. From the Suzaku data, we detected significant hard X-ray emission from A2163 in the 12-60 keV band at the $28sigma$ level (or at the $5.5sigma$ level if a systematic error is considered). The Suzaku HXD spectrum alone is consistent with the single-T thermal model of gas temperature $kT=14$ keV. From the XMM data, we constructed a multi-T model including a very hot ($kT=18$ keV) component in the NE region. Incorporating the multi-T and the power-law models into a two-component model with a radio-band photon index, the 12-60 keV energy flux of non-thermal emission is constrained within $5.3 pm 0.9 (pm 3.8)times 10^{-12}~{rm erg, s^{-1} cm^{-2}}$. The 90% upper limit of detected IC emission is marginal ($< 1.2times 10^{-11}~{rm erg, s^{-1} cm^{-2}}$ in the 12-60 keV). The estimated magnetic field in A2163 is $B > 0.098~{rm mu G}$. While the present results represent a three-fold increase in the accuracy of the broad band spectral model of A2163, more sensitive hard X-ray observations are needed to decisively test for the presence of hard X-ray emission due to IC emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا