ﻻ يوجد ملخص باللغة العربية
We will report on the electromagnetic response due to induced dipolar currents in metamaterials of 2-dimensional array of metallic elements. Used as frequency selectors, the metamaterial transmittance presents a single resonance in the region from 1 to 8 THz that can be easily selected and scaled maintaining unaltered the quality factor by choosing the size and shape of the planar metallic element and exploiting the scalability properties of the Maxwell equations. Basing on these studies, we have designed and tested a series of simple and inexpensive frequency selective metamaterials fabricated by using lithographic processes.
Plasmon induced transparency (PIT) effect in a terahertz graphene metamaterial is numerically and theoretically analyzed. The proposed metamaterial comprises of a pair of graphene split ring resonators placed alternately on both sides of a graphene s
We report an experimental demonstration of thermal tuning of resonance frequency in a planar terahertz metamaterial consisting of a gold split-ring resonator array fabricated on a bulk single crystal strontium titanate (SrTiO3) substrate. Cooling the
Negative index metamaterials (NIMs) give rise to unusual and intriguing properties and phenomena, which may lead to important applications such as superlens, subwavelength cavity and slow light devices. However, the negative refractive index in metam
In this Letter we present resonance properties in terahertz metamaterials consisting of a split-ring resonator array made from high temperature superconducting films. By varying the temperature, we observed efficient metamaterial resonance switching
This work theoretically and analytically demonstrates the magnetic field-induced spectral radiative properties of photonic metamaterials incorporating both Indium Antimonide (InSb) and Tungsten (W) in the terahertz (THz) frequency regime. We have var