ترغب بنشر مسار تعليمي؟ اضغط هنا

Local Galois theory in dimension two: Second edition

93   0   0.0 ( 0 )
 نشر من قبل Katherine Stevenson
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove a generalization of Shafarevichs Conjecture for fields of Laurent series in two variables over an arbitrary field. While not projective, the absolute Galois group of such a field is shown to be semi-free. We also show that the function field of a smooth projective curve over a large field has semi-free absolute Galois group. In the first edition of this paper it was shown that these groups are quasi-free, which is weaker.



قيم البحث

اقرأ أيضاً

72 - Christian Urech 2018
We classify simple groups that act by birational transformations on compact complex Kahler surfaces. Moreover, we show that every finitely generated simple group that acts non-trivially by birational transformations on a projective surface over an arbitrary field is finite.
We study the relationship between the local and global Galois theory of function fields over a complete discretely valued field. We give necessary and sufficient conditions for local separable extensions to descend to global extensions, and for the l ocal absolute Galois group to inject into the global absolute Galois group. As an application we obtain a local-global principle for the index of a variety over such a function field. In this context we also study algebra
We study the Hodge filtration on the local cohomology sheaves of a smooth complex algebraic variety along a closed subscheme Z in terms of log resolutions, and derive applications regarding the local cohomological dimension, the Du Bois complex, loca l vanishing, and reflexive differentials associated to Z.
74 - Haidong Liu 2019
We prove that the log canonical ring of a projective log canonical pair in Kodaira dimension two is finitely generated.
81 - Olga Lukina 2018
In this paper, we study the actions of profinite groups on Cantor sets which arise from representations of Galois groups of certain fields of rational functions. Such representations are associated to polynomials, and they are called profinite iterat ed monodromy groups. We are interested in a topological invariant of such actions called the asymptotic discriminant. In particular, we give a complete classification by whether the asymptotic discriminant is stable or wild in the case when the polynomial generating the representation is quadratic. We also study different ways in which a wild asymptotic discriminant can arise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا