ﻻ يوجد ملخص باللغة العربية
We study the Hodge filtration on the local cohomology sheaves of a smooth complex algebraic variety along a closed subscheme Z in terms of log resolutions, and derive applications regarding the local cohomological dimension, the Du Bois complex, local vanishing, and reflexive differentials associated to Z.
In this paper we study the local cohomology modules of Du Bois singularities. Let $(R,m)$ be a local ring, we prove that if $R_{red}$ is Du Bois, then $H_m^i(R)to H_m^i(R_{red})$ is surjective for every $i$. We find many applications of this result.
We consider a series of four subexceptional representations coming from the third line of the Freudenthal-Tits magic square; using Bourbaki notation, these are fundamental representations $(G,X)$ corresponding to $(C_3, omega_3),, (A_5, omega_3), , (
If a morphism of germs of schemes induces isomorphisms of all local jet schemes, does it follow that the morphism is an isomorphism? This problem is called the local isomorphism problem. In this paper, we use jet schemes to introduce various closure
The ACC conjecture for local volumes predicts that the set of local volumes of klt singularities $xin (X,Delta)$ satisfies the ACC if the coefficients of $Delta$ belong to a DCC set. In this paper, we prove the ACC conjecture for local volumes under
v2: We improved a little bit according to the referees wishes. v1: On $X$ projective smooth over a field $k$, Pink and Roessler conjecture that the dimension of the Hodge cohomology of an invertible $n$-torsion sheaf $L$ is the same as the one of i