ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrical detection of spin echoes for phosphorus donors in silicon

147   0   0.0 ( 0 )
 نشر من قبل Hans Huebl
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electrical detection of spin echoes via echo tomography is used to observe decoherence processes associated with the electrical readout of the spin state of phosphorus donor electrons in silicon near a SiO$_2$ interface. Using the Carr-Purcell pulse sequence, an echo decay with a time constant of $1.7pm0.2 rm{mu s}$ is observed, in good agreement with theoretical modeling of the interaction between donors and paramagnetic interface states. Electrical spin echo tomography thus can be used to study the spin dynamics in realistic spin qubit devices for quantum information processing.



قيم البحث

اقرأ أيضاً

The hyperfine interaction of phosphorus donors in fully strained Si thin films grown on virtual Si$_{1-x}$Ge$_x$ substrates with $xleq 0.3$ is determined via electrically detected magnetic resonance. For highly strained epilayers, hyperfine interacti ons as low as 0.8 mT are observed, significantly below the limit predicted by valley repopulation. Within a Greens function approach, density functional theory (DFT) shows that the additional reduction is caused by the volume increase of the unit cell and a local relaxation of the Si ligands of the P donor.
Donor spins in silicon are some of the most promising qubits for upcoming solid-state quantum technologies. The nuclear spins of phosphorus donors in enriched silicon have among the longest coherence times of any solid-state system as well as simulta neous qubit initialization, manipulation and readout fidelities near ~99.9%. Here we characterize the phosphorus in silicon system in the regime of zero magnetic field, where a singlet-triplet spin clock transition can be accessed, using laser spectroscopy and magnetic resonance methods. We show the system can be optically hyperpolarized and has ~10 s Hahn echo coherence times, even at Earths magnetic field and below.
Electron paramagnetic resonance of ensembles of phosphorus donors in silicon has been detected electrically with externally applied magnetic fields lower than 200 G. Because the spin Hamiltonian was dominated by the contact hyperfine term rather than by the Zeeman terms at such low magnetic fields, superposition states $ alpha{}| uparrow downarrow >+beta{}| downarrow uparrow >$ and $-beta{}| uparrow downarrow > + alpha{}| downarrow uparrow >$ were formed between phosphorus electron and nuclear spins, and electron paramagnetic resonance transitions between these superposition states and $| uparrow uparrow >$ or $| downarrow downarrow >$ states are observed clearly. A continuous change of $alpha{}$ and $beta{}$ with the magnetic field was observed with a behavior fully consistent with theory of phosphorus donors in silicon.
115 - J. S. Smith , A. Budi , M. C. Per 2016
The s manifold energy levels for phosphorus donors in silicon are important input parameters for the design and modelling of electronic devices on the nanoscale. In this paper we calculate these energy levels from first principles using density funct ional theory. The wavefunction of the donor electrons ground state is found to have a form that is similar to an atomic s orbital, with an effective Bohr radius of 1.8 nm. The corresponding binding energy of this state is found to be 41 meV, which is in good agreement with the currently accepted value of 45.59 meV. We also calculate the energies of the excited 1s(T) and 1s(E) states, finding them to be 32 and 31 meV respectively. These results constitute the first ab initio confirmation of the s manifold energy levels for phosphorus donors in silicon.
Modulation of donor electron wavefunction via electric fields is vital to quantum computing architectures based on donor spins in silicon. For practical and scalable applications, the donor-based qubits must retain sufficiently long coherence times i n any realistic experimental conditions. Here, we present pulsed electron spin resonance studies on the longitudinal $(T_1)$ and transverse $(T_2)$ relaxation times of phosphorus donors in bulk silicon with various electric field strengths up to near avalanche breakdown in high magnetic fields of about 1.2 T and low temperatures of about 8 K. We find that the $T_1$ relaxation time is significantly reduced under large electric fields due to electric current, and $T_2$ is affected as the $T_1$ process can dominate decoherence. Furthermore, we show that the magnetoresistance effect in silicon can be exploited as a means to combat the reduction in the coherence times. While qubit coherence times must be much longer than quantum gate times, electrically accelerated $T_1$ can be found useful when qubit state initialization relies on thermal equilibration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا