ﻻ يوجد ملخص باللغة العربية
The deuteron-proton elastic scattering is studied in the multiple scattering expansion formalism. The contributions of the one-nucleon-exchange, single- and double scattering are taken into account. The Love and Franey parameterization of the nucleon-nucleon $t$-matrix is used, that gives an opportunity to include the off-energy-shell effects into calculations. Differential cross sections are considered at four energies, $T_d=390, 500, 880, 1200$ MeV. The obtained results are compared with the experimental data.
By considering three different Nucleon-Nucleon (NN) elastic differential cross sections: the Cugnon emph{et al.} parameterized differential cross section [Nucl. Instrum. Methods Phys. Res., Sect. textbf{B111}, 215 (1996)], and the differential cross
Observables in elastic proton-deuteron scattering are sensitive probes of the nucleon-nucleon interaction and three-nucleon force effects. The present experimental data base for this reaction is large, but contains a large discrepancy between data se
We present a precise measurement of the cross section, proton and $rm ^3He$ analyzing powers, and spin correlation coefficient $C_{y,y}$ for $p$-$rm ^3He$ elastic scattering near 65 MeV, and a comparison with rigorous four-nucleon scattering calculat
A tagged medium-energy neutron beam has been used in a precise measurement of the absolute differential cross section for np back-scattering. The results resolve significant discrepancies within the np database concerning the angular dependence in th
The differential cross section for proton-proton elastic scattering has been measured at a beam energy of 1.0 GeV and in 200 MeV steps from 1.6 to 2.8 GeV for centre-of-mass angles in the range from 12-16 degrees to 25-30 degrees, depending on the en