ﻻ يوجد ملخص باللغة العربية
In a dense cloud of massive fermions interacting by exchange of a light scalar field, the effective mass of the fermion can become negligibly small. As the cloud expands, the effective mass and the total energy density eventually increase with decreasing density. In this regime, the pressure-density relation can approximate that required for dark energy. We apply this phenomenon to the expansion of the Universe with a very light scalar field and infer relations between the parameters available and cosmological observations. Majorana neutrinos at a mass that may have been recently determined, and fermions such as the Lightest Supersymmetric Particle (LSP) may both be consistent with current observations of dark energy.
This paper has been withdrawn by the authors. Please see [arXiv:1208.3224]. We investigate a model where dark energy is caused by the photon field coupling to gravitation. The cosmological background expectation value of the electromagnetic scalar po
We propose further tests of the assumption that the mass of the heavy standard particles ($Z,W,t,...$) arises from a special coupling with dark matter. We look for effects of new interactions due to dark matter exchanges between heavy particles in several $e^+e^-$ and hadronic collision processes.
Various aspects of the connection between cloud cover (CC) and cosmic rays (CR) are analysed. We argue that the anticorrelation between the temporal behaviour of low (LCC) and middle (MCC) clouds evidences against causal connection between them and C
We propose a minimal model in which the flavour anomaly in the $b to s mu^+ mu^-$ transition is connected to the breaking of Peccei-Quinn (PQ) symmetry. The flavour anomaly is explained from new physics contribution by introducing one generation of h
We propose a new scenario for baryogenesis through leptogenesis, where the CP phase relevant for leptogenesis is connected directly to the PMNS phase(s) in the light neutrino mixing matrix. The scenario is realized in case only one CP phase appears i