ترغب بنشر مسار تعليمي؟ اضغط هنا

A connection between flavour anomaly, neutrino mass, and axion

52   0   0.0 ( 0 )
 نشر من قبل Seungwon Baek
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Seungwon Baek




اسأل ChatGPT حول البحث

We propose a minimal model in which the flavour anomaly in the $b to s mu^+ mu^-$ transition is connected to the breaking of Peccei-Quinn (PQ) symmetry. The flavour anomaly is explained from new physics contribution by introducing one generation of heavy quark and heavy lepton which are vector-like under the standard model (SM) gauge group but charged under a local $U(1)_X$ group. They mix with the SM quarks and leptons, inducing flavour-changing $Z^prime$ couplings, which generates the $b to s mu^+mu^-$ anomaly at tree level. On the other hand the new fermions are chiral under the global Peccei-Quinn(PQ) symmetry. The pseudo-Goldstone boson coming from the spontaneous breaking of the PQ symmetry becomes an axion, solving the strong CP problem and providing a cold dark matter candidate. The same symmetry prevents the right-handed neutrino from having a Majorana mass term. But the introduction of a neutrino-specific Higgs doublet allows neutrino to have Dirac mass term without fine-tuning problem. The model shows an interplay between axion, neutrino, dark matter, and flavour physics.



قيم البحث

اقرأ أيضاً

We propose a one-loop induced radiative neutrino mass model with anomaly free flavour dependent gauge symmetry: $mu$ minus $tau$ symmetry $U(1)_{mu-tau}$. A neutrino mass matrix satisfying current experimental data can be obtained by introducing a we ak isospin singlet scalar boson that breaks $U(1)_{mu-tau}$ symmetry, an inert doublet scalar field, and three right-handed neutrinos in addition to the fields in the standard model. We find that a characteristic structure appears in the neutrino mass matrix: two-zero texture form which predicts three non-zero neutrino masses and three non-zero CP-phases from five well measured experimental inputs of two squared mass differences and three mixing angles. Furthermore, it is clarified that only the inverted mass hierarchy is allowed in our model. In a favored parameter set from the neutrino sector, the discrepancy in the muon anomalous magnetic moment between the experimental data and the the standard model prediction can be explained by the additional neutral gauge boson loop contribution with mass of order 100 MeV and new gauge coupling of order $10^{-3}$.
99 - Th. Feldmann 2008
Lepton-flavour symmetry in the Standard Model is broken by small masses for charged leptons and neutrinos. Introducing neutrino masses via dimension-5 operators associated to lepton-number violation at a very high scale, the corresponding coupling ma trix may still have entries of order 1, resembling the situation in the quark sector with large top Yukawa coupling. As we have shown recently, in such a situation one may introduce the coupling matrices between lepton and Higgs fields as non-linear representations of lepton-flavour symmetry within an effective-theory framework. This allows us to separate the effects related to the large mass difference observed in atmospheric neutrino oscillations from those related to the solar mass difference. We discuss the cases of normal or inverted hierarchical and almost degenerate neutrino spectrum, give some examples to illustrate minimal lepton-flavour violation in radiative and leptonic decays, and also provide a systematic definition of next-to-minimal lepton-flavour violation within the non-linear framework.
The present work introduces two possible extensions of the Standard Model Higgs sector. In the first case, the Zee-Babu type model for the generation of neutrino mass is augmented with a scalar triplet and additional singly charged scalar singlets. T he second scenario, on the other hand, generalizes the Type-II seesaw model by replicating the number of the scalar triplets. A $mathbb{Z}_3$ symmetry is imposed in case of both the scenarios, but, allowed to be violated by terms of mass dimension two and three for generating neutrino masses and mixings. We examine how the models so introduced can explain the experimental observation on the muon anomalous magnetic moment. We estimate the two-loop contribution to neutrino mass induced by the scalar triplet, in addition to what comes from the doubly charged singlet in the usual Zee-Babu framework, in the first model. On the other hand, the neutrino mass arises in the usual Type-II fashion in the second model. In addition, the role of the $mathbb{Z}_3$ symmetry in suppressing lepton flavor violation is also elucidated.
We consider the Peccei-Quinn (PQ) mechanism as the one behind the Dirac neutrino masses when these are generated through the $d=5$ effective operator $bar{L}tilde{H}N_Rphi$ at one loop level, with $phi$ being a Standard Model singlet scalar. In this setup, the PQ symmetry guarantees that the one-loop realization of such an effective operator gives the leading contribution to the Dirac neutrino masses by forbidding the contributions arising from its tree level realizations. All the mediators in the one-loop neutrino mass diagrams can be stabilized by a remnant $Z_N$ symmetry from the PQ symmetry breaking, thus forming a dark sector besides the axion sector and leading to mixed axion/WIMP dark matter scenarios.
We develop the approach to the problem of neutrino oscillations in a magnetic field introduced in cite{Popov:2019nkr} and extend it to the case of three neutrino generations. The theoretical framework suitable for computation of the Dirac neutrino sp in, flavour and spin-flavour oscillations probabilities in a magnetic field is given. It is shown that there is an entanglement between neutrino flavour and spin oscillations and in the general case it is not possible to consider these two types of neutrino oscillations separately. The closed analytic expressions for the probabilities of oscillations are obtained accounting for the normal and inverted hierarchies and the possible effect of CP violation. In particular, it is shown that the probabilities of the
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا