ﻻ يوجد ملخص باللغة العربية
The measurement of an excess in the cosmic-ray electron spectrum between 300 and 800 GeV by the ATIC experiment has - together with the PAMELA detection of a rise in the positron fraction up to 100 GeV - motivated many interpretations in terms of dark matter scenarios; alternative explanations assume a nearby electron source like a pulsar or supernova remnant. Here we present a measurement of the cosmic-ray electron spectrum with H.E.S.S. starting at 340 GeV. While the overall electron flux measured by H.E.S.S. is consistent with the ATIC data within statistical and systematic errors, the H.E.S.S. data exclude a pronounced peak in the electron spectrum as suggested for interpretation by ATIC. The H.E.S.S. data follow a power-law spectrum with spectral index of 3.0 +- 0.1 (stat.) +- 0.3 (syst.), which steepens at about 1 TeV.
A strong excess in a form of a wide peak in the energy range of 300-800 GeV was discovered in the first measurements of the electron spectrum in the energy range from 20 GeV to 3 TeV by the balloon-borne experiment ATIC (J. Chang et al. Nature, 2008)
Radiative energy losses are very important in regulating the cosmic ray electron and/or positron (CRE) spectrum during their propagation in the Milky Way. Particularly, the Klein-Nishina (KN) effect of the inverse Compton scattering (ICS) results in
Supernova remnants (SNRs) are the prime candidates for the acceleration of the Galactic Cosmic Rays. Tracers for interactions of Cosmic Rays with ambient material are gamma rays at TeV energies, which can be observed with ground based Cherenkov teles
Despite significant progress over more than 100 years, no accelerator has been unambiguously identified as the source of the locally measured flux of cosmic rays. High-energy electrons and positrons are of particular importance in the search for near
The latest AMS-02 data on cosmic ray electrons show a break in the energy spectrum around 40 GeV, with a change in the slope of about 0.1. We perform a combined fit to the newest AMS-02 positron and electron flux data using a model which includes pro