ﻻ يوجد ملخص باللغة العربية
Despite significant progress over more than 100 years, no accelerator has been unambiguously identified as the source of the locally measured flux of cosmic rays. High-energy electrons and positrons are of particular importance in the search for nearby sources as radiative energy losses constrain their propagation to distances of about 1 kpc around 1 TeV. At the highest energies, the spectrum is therefore dominated and shaped by only a few sources whose properties can be inferred from the fine structure of the spectrum at energies currently accessed by experiments like AMS-02, CALET, DAMPE, Fermi-LAT, H.E.S.S. and ISS-CREAM. We present a stochastic model of the Galactic all-electron flux and evaluate its compatibility with the measurement recently presented by the H.E.S.S. collaboration. To this end, we have MC generated a large sample of the all-electron flux from an ensemble of random distributions of sources. We confirm the non-Gaussian nature of the probability density of fluxes at individual energies previously reported in analytical computations. For the first time, we also consider the correlations between the fluxes at different energies, treating the binned spectrum as a random vector and parametrising its joint distribution with the help of a pair-copula construction. We show that the spectral break observed in the all-electron spectrum by H.E.S.S. and DAMPE is statistically compatible with a distribution of astrophysical sources like supernova remnants or pulsars, but requires a rate smaller than the canonical supernova rate. This important result provides an astrophysical interpretation of the spectrum at TeV energies and allows differentiating astrophysical source models from exotic explanations, like dark matter annihilation. We also critically assess the reliability of using catalogues of known sources to model the electron-positron flux.
We report on the measurement of the all-particle cosmic ray energy spectrum with the High Altitude Water Cherenkov (HAWC) Observatory in the energy range 10 to 500 TeV. HAWC is a ground based air-shower array deployed on the slopes of Volcan Sierra N
Radiative energy losses are very important in regulating the cosmic ray electron and/or positron (CRE) spectrum during their propagation in the Milky Way. Particularly, the Klein-Nishina (KN) effect of the inverse Compton scattering (ICS) results in
Thanks to recent technological development, a new generation of cosmic ray experiments have been developed with more sensitivity to study these particles in the primary energy interval from 10 TeV to 1 PeV, such as HAWC. Due to its design and high al
High energy cosmic ray electrons plus positrons (CREs), which lose energy quickly during their propagation, provide an ideal probe of Galactic high-energy processes and may enable the observation of phenomena such as dark-matter particle annihilation
A self-consistent model of a one-dimensional cosmic-ray (CR) halo around the Galactic disk is formulated with the restriction to a minimum number of free parameters. It is demonstrated that the turbulent cascade of MHD waves does not necessarily play