ﻻ يوجد ملخص باللغة العربية
We review and assess a part of the recent work on Casimir apparatuses in the weak gravitational field of the Earth. For a free, real massless scalar field subject to Dirichlet or Neumann boundary conditions on the parallel plates, the resulting regularized and renormalized energy-momentum tensor is covariantly conserved, while the trace anomaly vanishes if the massless field is conformally coupled to gravity. Conformal coupling also ensures a finite Casimir energy and finite values of the pressure upon parallel plates. These results have been extended to an electromagnetic field subject to perfect conductor (hence idealized) boundary conditions on parallel plates, by various authors. The regularized and renormalized energy-momentum tensor has been evaluated up to second order in the gravity acceleration. In both the scalar and the electromagnetic case, studied to first order in the gravity acceleration, the theory predicts a tiny force in the upwards direction acting on the apparatus. This effect is conceptually very interesting, since it means that Casimir energy is indeed expected to gravitate, although the magnitude of the expected force makes it necessary to overcome very severe signal-modulation problems.
We consider a Casimir apparatus consisting of two perfectly conducting parallel plates, subject to the weak gravitational field of the Earth. The aim of this paper is the calculation of the energy-momentum tensor of this system for a free, real massl
The influence of the gravity acceleration on the regularized energy-momentum tensor of the quantized electromagnetic field between two plane parallel conducting plates is derived. A perturbative expansion, to first order in the constant acceleration
In this paper we consider a Lorentz-breaking extension of the theory for a real massive scalar quantum field in the region between two large parallel plates, with our manner to break the Lorentz symmetry is CPT-even, aether-like. For this system we c
In this paper, we evaluate the Casimir energy and pressure for a massive fermionic field confined in the region between two parallel plates. In order to implement this confinement we impose the standard MIT bag boundary on the plates for the fermioni
The weak-field expansion of the charged fermion propagator under a uniform magnetic field is studied. Starting from Schwingers proper-time representation, we express the charged fermion propagator as an infinite series corresponding to different Land