ترغب بنشر مسار تعليمي؟ اضغط هنا

Casimir effects in Lorentz-violating scalar field theory

128   0   0.0 ( 0 )
 نشر من قبل A. Yu. Petrov
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we consider a Lorentz-breaking extension of the theory for a real massive scalar quantum field in the region between two large parallel plates, with our manner to break the Lorentz symmetry is CPT-even, aether-like. For this system we calculated the Casimir energy considering different boundary conditions. It turns out to be that the Casimir energy strongly depends on the direction of the constant vector implementing the Lorentz symmetry breaking, as well as on the boundary conditions.



قيم البحث

اقرأ أيضاً

Violation of the Lorentz symmetry has important effects on physical quantities including field propagators. Therefore, in addition to the leading order, the sub-leading order of quantities may be modified. In this paper, we calculate the next to lead ing (NLO) radiative corrections to the Casimir energy in the presence of two perfectly conducting parallel plates for $phi^4$ theory with a Lorentz-breaking extension. We do the renormalization and investigate these NLO corrections for three distinct directions of the Lorentz violation; temporal direction, parallel and perpendicular to the plates.
We consider topological defects for the $lambdaphi^4$ theory in (1+1) dimensions with a Lorentz-violating background. It has been shown, by M. Barreto et al. (2006) cite{barreto2006defect}, one cannot have original effects in (the leading order of) single scalar field model. Here, we introduce a new Lorentz-violating term, next to leading order which cannot be absorbed by any redefinition of the scalar field or coordinates. Our term is the lowest order term which leads to concrete effects on the kink properties. We calculate the corrections to the kink shape and the corresponding mass. Quantization of the kink is performed and the revised modes are obtained. We find the bound and continuum states are affected due to this Lorentz symmetry violation.
In this paper we consider different classical effects in a model for a scalar field incorporating Lorentz symmetry breaking due to the presence of a single background vector v^{mu} coupled to its derivative. We perform an investigation of the interac tion energy between stationary steady sources concentrated along parallel branes with an arbitrary number of dimensions, and derive from this study some physical consequences. For the case of the scalar dipole we show the emergence of a nontrivial torque, which is distinctive sign of the Lorentz violation. We also investigate a similar model in the presence of a semi-transparent mirror. For a general relative orientation between the mirror and the v^{mu}, we are able to perform calculations perturbatively in v^{mu} up to second order. We also find results without recourse to approximations for two special cases, that of the mirror and v^{mu} being parallel or perpendicular to each other. For all these configurations, the propagator for the scalar field and the interaction force between the mirror and a point-like field source are computed. It is shown that the image method is valid in our model for the Dirichlets boundary condition, and we argue that this is a non-trivial result. We also show the emergence of a torque on the mirror depending on its orientation with respect to the Lorentz violating background. This is a new effect with no counterpart in theories with Lorentz symmetry in the presence of mirrors.
123 - Arianto , Freddy P. Zen , Triyanta 2008
We investigate properties of attractors for scalar field in the Lorentz violating scalar-vector-tensor theory of gravity. In this framework, both the effective coupling and potential functions determine the stabilities of the fixed points. In the mod el, we consider the constants of slope of the effective coupling and potential functions which lead to the quadratic effective coupling vector with the (inverse) power-law potential. For the case of purely scalar field, there are only two stable attractor solutions in the inflationary scenario. In the presence of a barotropic fluid, the fluid dominated solution is absent. We find two scaling solutions: the kinetic scaling solution and the scalar field scaling solutions. We show the stable attractors in regions of ($gamma$, $xi$) parameter space and in phase plane plot for different qualitative evolutions. From the standard nucleosynthesis, we derive the constraints for the value of the coupling parameter.
In this paper, we investigate the thermal effect on the Casimir energy associated with a massive scalar quantum field confined between two large parallel plates in a CPT-even, aether-like Lorentz-breaking scalar field theory. In order to do that we c onsider a nonzero chemical potential for the scalar field assumed to be in thermal equilibrium at some finite temperature. The calculations of the energies are developed by using the Abel-Plana summation formula, and the corresponding results are analyzed in several asymptotic regimes of the parameters of the system, like mass, separations between the plates and temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا