ﻻ يوجد ملخص باللغة العربية
The K^- induced production of Lambda(1405) is investigated in K^- d to pi Sigma n reactions based on coupled-channels chiral dynamics, in order to discuss the resonance position of the Lambda(1405) in the KbarN channel. We find that the K^-d to Lambda(1405)n process favors the production of Lambda(1405) initiated by the KbarN channel. The present approach indicates that the Lambda(1405) resonance position is 1420 MeV rather than 1405 MeV in the pi Sigma invariant mass spectra of K- d to pi Sigma n reactions. This is consistent with an observed spectrum of the K^- d to pi^+ Sigma^- n with 686-844 MeV/c incident K^- by bubble chamber experiments done in the 70s. Our model also reproduces the measured Lambda(1405) production cross section.
The electromagnetic mean squared radii, <r^2>_E and <r^2>_M, of Lambda(1405) are calculated in the chiral unitary model. We describe the excited baryons as dynamically generated resonances in the octet meson and octet baryon scattering. We evaluate v
The electric mean squared radii <r^2>_E of Lambda(1405) are calculated in the chiral unitary model. We describe the Lambda(1405) as a dynamically generated resonance fully in the octet meson and octet baryon scattering. We also consider ``Lambda(1405
We discuss several aspects of the Lambda(1405) resonance in relation to the recent theoretical developments in chiral dynamics. We derive an effective single-channel KbarK N interaction based on chiral SU(3) coupled-channel approach, emphasizing the
Recent CLAS data for the pi Sigma invariant mass distributions (line-shapes) in the gamma p -> K^+ pi Sigma reaction are theoretically investigated. The line-shapes have peaks associated with the Lambda(1405) excitation. Our model consists of gauge i
The internal structure of the resonant Lambda(1405) state is investigated based on meson-baryon coupled-channels chiral dynamics. We evaluate Lambda(1405) form factors which are extracted from current-coupled scattering amplitudes in meson-baryon deg