ﻻ يوجد ملخص باللغة العربية
We prove resolvent estimates for semiclassical operators such as $-h^2 Delta+V(x)$ in scattering situations. Provided the set of trapped classical trajectories supports a chaotic flow and is sufficiently filamentary, the analytic continuation of the resolvent is bounded by $h^{-M}$ in a strip whose width is determined by a certain topological pressure associated with the classical flow. This polynomial estimate has applications to local smoothing in Schrodinger propagation and to energy decay of solutions to wave equations.
This paper is devoted to the study of a semiclassical black box operator $P$. We estimate the norm of its resolvent truncated near the trapped set by the norm of its resolvent truncated on rings far away from the origin. For $z$ in the unphysical she
In this article, we analyze the propagation of Wigner measures of a family of solutions to a system of semi-classical pseudodifferential equations presenting eigenvalues crossings on hypersurfaces. We prove the propagation along classical trajectorie
We suggest a new representation of Maslovs canonical operator in a neighborhood of the caustics using a special class of coordinate systems (eikonal coordinates) on Lagrangian manifolds. The specific features of the two-dimensional case are considere
We consider quantum walks with position dependent coin on 1D lattice $mathbb{Z}$. The dispersive estimate $|U^tP_c u_0|_{l^infty}lesssim (1+|t|)^{-1/3} |u_0|_{l^1}$ is shown under $l^{1,1}$ perturbation for the generic case and $l^{1,2}$ perturbation
We study large time behavior of quantum walks (QWs) with self-dependent (nonlinear) coin. In particular, we show scattering and derive the reproducing formula for inverse scattering in the weak nonlinear regime. The proof is based on space-time estim