ترغب بنشر مسار تعليمي؟ اضغط هنا

BLAST: The Mass Function, Lifetimes, and Properties of Intermediate Mass Cores from a 50 Square Degree Submillimeter Galactic Survey in Vela (l = ~265)

182   0   0.0 ( 0 )
 نشر من قبل Matthew Truch
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present first results from an unbiased 50 deg^2 submillimeter Galactic survey at 250, 350, and 500 micron from the 2006 flight of the Balloon-borne Large Aperture Submillimeter Telescope (BLAST). The map has resolution ranging from 36 arcsec to 60 arcsec in the three submillimeter bands spanning the thermal emission peak of cold starless cores. We determine the temperature, luminosity, and mass of more than one thousand compact sources in a range of evolutionary stages and an unbiased statistical characterization of the population. From comparison with C^(18)O data, we find the dust opacity per gas mass, kappa r = 0.16 cm^2 g^(-1) at 250 micron, for cold clumps. We find that 2% of the mass of the molecular gas over this diverse region is in cores colder than 14 K, and that the mass function for these cold cores is consistent with a power law with index alpha = -3.22 +/- 0.14 over the mass range 14 M_sun < M < 80 M_sun. Additionally, we infer a mass-dependent cold core lifetime of t_c(M) = 4E6 (M/20 M_sun)^(-0.9) years - longer than what has been found in previous surveys of either low or high mass cores, and significantly longer than free fall or likely turbulent decay times. This implies some form of non-thermal support for cold cores during this early stage of star formation.



قيم البحث

اقرأ أيضاً

The Balloon-borne Large-Aperture Submillimeter Telescope (BLAST) carried out a 250, 350 and 500 micron survey of the galactic plane encompassing the Vela Molecular Ridge, with the primary goal of identifying the coldest dense cores possibly associate d with the earliest stages of star formation. Here we present the results from observations of the Vela-D region, covering about 4 square degrees, in which we find 141 BLAST cores. We exploit existing data taken with the Spitzer MIPS, IRAC and SEST-SIMBA instruments to constrain their (single-temperature) spectral energy distributions, assuming a dust emissivity index beta = 2.0. This combination of data allows us to determine the temperature, luminosity and mass of each BLAST core, and also enables us to separate starless from proto-stellar sources. We also analyze the effects that the uncertainties on the derived physical parameters of the individual sources have on the overall physical properties of starless and proto-stellar cores, and we find that there appear to be a smooth transition from the pre- to the proto-stellar phase. In particular, for proto-stellar cores we find a correlation between the MIPS24 flux, associated with the central protostar, and the temperature of the dust envelope. We also find that the core mass function of the Vela-D cores has a slope consistent with other similar (sub)millimeter surveys.
Observations with the Plateau de Bure Interferometer in the most extended configuration toward two intermediate-mass star-forming regions, IRAS22198+6336 and AFGL5142, reveal the presence of several complex organic molecules at ~500 AU scales, confir ming the presence of hot cores in both regions. The hot cores are not rich in CN-bearing molecules, as often seen in massive hot cores, and are mainly traced by CH3CH2OH, (CH2OH)2, CH3COCH3, and CH3OH, with additionally CH3CHO, CH3OD and HCOOD for IRAS22198+6336, and C6H, and O13CS for AFGL5142. The emission of complex molecules is resolved down to sizes of ~300 and ~600 AU, for IRAS22198+6336 and AFGL5142, respectively, and most likely is tracing protostellar disks rather than flattened envelopes or toroids as usually found. This is specially clear for the case of IRAS22198+6336, where we detect a velocity gradient for all the mapped molecules perpendicular to the most chemically rich outflow of the region, yielding a dynamic mass >4 Msun. As for AFGL5142, the hot core emission is resolved into two elongated cores separated 1800 AU. A detailed comparison of the complex molecule peaks to the new CO(2-1) data and H2O maser data from literature suggests that also for AFGL5142 the complex molecules are mainly associated with disks, except for a faint and extended molecular emission found to the west, which is possibly produced in the interface between one of the outflows and the dense surrounding gas.
Similarity in shape between the initial mass function (IMF) and the core mass functions (CMFs) in star-forming regions prompts the idea that the IMF originates from the CMF through a self-similar core-to-star mass mapping process. To accurately deter mine the shape of the CMF, we create a sample of 8,431 cores with the dust continuum maps of the Cygnus X giant molecular cloud complex, and design a procedure for deriving the CMF considering the mass uncertainty, binning uncertainty, sample incompleteness, and the statistical errors. The resultant CMF coincides well with the IMF for core masses from a few $M_{odot}$ to the highest masses of 1300 $M_{odot}$ with a power-law of ${rm d}N/{rm d}Mpropto M^{-2.30pm0.04}$, but does not present an obvious flattened turnover in the low-mass range as the IMF does. More detailed inspection reveals that the slope of the CMF steepens with increasing mass. Given the numerous high-mass star-forming activities of Cygnus X, this is in stark contrast with the existing top-heavy CMFs found in high-mass star-forming clumps. We also find that the similarity between the IMF and the mass function of cloud structures is not unique at core scales, but can be seen for cloud structures of up to several pc scales. Finally, our SMA observations toward a subset of the cores do not present evidence for the self-similar mapping. The latter two results indicate that the shape of the IMF may not be directly inherited from the CMF.
We present $sim10-40,mu$m SOFIA-FORCAST images of 14 intermediate-mass protostar candidates as part of the SOFIA Massive (SOMA) Star Formation Survey. We build spectral energy distributions (SEDs), also utilizing archival Spitzer, Herschel and IRAS d ata. We then fit the SEDs with radiative transfer (RT) models of Zhang & Tan (2018), based on Turbulent Core Accretion theory, to estimate key protostellar properties. With the addition of these intermediate-mass sources, SOMA protostars span luminosities from $sim10^{2}-10^{6}:L_{odot}$, current protostellar masses from $sim0.5-30:M_{odot}$ and ambient clump mass surface densities, $Sigma_{rm cl}$ from $0.1-3:{rm{g:cm}^{-2}}$. A wide range of evolutionary states of the individual protostars and of the protocluster environments are also probed. We have also considered about 50 protostars identified in Infrared Dark Clouds and expected to be at the earliest stages of their evolution. With this global sample, most of the evolutionary stages of high- and intermediate-mass protostars are probed. From the best fitting models, there is no evidence of a threshold value of protocluster clump mass surface density being needed to form protostars up to $sim25:M_odot$. However, to form more massive protostars, there is tentative evidence that $Sigma_{rm{cl}}$ needs to be $gtrsim1:{rm{g,cm}}^{-2}$. We discuss how this is consistent with expectations from core accretion models that include internal feedback from the forming massive star.
135 - Genaro Suarez 2021
We present the core mass function (CMF) of the massive star-forming clump G33.92+0.11 using 1.3 mm observations obtained with the Atacama Large Millimeter/submillimeter Array (ALMA). With a resolution of 1000 au, this is one of the highest resolution CMF measurements to date. The CMF is corrected by flux and number incompleteness to obtain a sample that is complete for gas masses $Mgtrsim2.0 M_odot$. The resulting CMF is well represented by a power-law function ($dN/dlog Mpropto M^Gamma$), whose slope is determined using two different approaches: $i)$ by least-squares fitting of power-law functions to the flux- and number-corrected CMF, and $ii)$ by comparing the observed CMF to simulated samples with similar incompleteness. We provide a prescription to quantify and correct a flattening bias affecting the slope fits in the first approach, which is caused by small-sample or edge effects when the data is represented by either classical histograms or a kernel density estimate, respectively. The resulting slopes from both approaches are in good agreement each other, with $Gamma=-1.11_{-0.11}^{+0.12}$ being our adopted value. Although this slope appears to be slightly flatter than the Salpeter slope $Gamma=-1.35$ for the stellar initial mass function (IMF), we find from Monte Carlo simulations that the CMF in G33.92+0.11 is statistically indistinguishable from the Salpeter representation of the stellar IMF. Our results are consistent with the idea that the form of the IMF is inherited from the CMF, at least at high masses and when the latter is observed at high-enough resolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا