ترغب بنشر مسار تعليمي؟ اضغط هنا

The SOFIA Massive (SOMA) Star Formation Survey. III. From Intermediate- to High-Mass Protostars

110   0   0.0 ( 0 )
 نشر من قبل Mengyao Liu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present $sim10-40,mu$m SOFIA-FORCAST images of 14 intermediate-mass protostar candidates as part of the SOFIA Massive (SOMA) Star Formation Survey. We build spectral energy distributions (SEDs), also utilizing archival Spitzer, Herschel and IRAS data. We then fit the SEDs with radiative transfer (RT) models of Zhang & Tan (2018), based on Turbulent Core Accretion theory, to estimate key protostellar properties. With the addition of these intermediate-mass sources, SOMA protostars span luminosities from $sim10^{2}-10^{6}:L_{odot}$, current protostellar masses from $sim0.5-30:M_{odot}$ and ambient clump mass surface densities, $Sigma_{rm cl}$ from $0.1-3:{rm{g:cm}^{-2}}$. A wide range of evolutionary states of the individual protostars and of the protocluster environments are also probed. We have also considered about 50 protostars identified in Infrared Dark Clouds and expected to be at the earliest stages of their evolution. With this global sample, most of the evolutionary stages of high- and intermediate-mass protostars are probed. From the best fitting models, there is no evidence of a threshold value of protocluster clump mass surface density being needed to form protostars up to $sim25:M_odot$. However, to form more massive protostars, there is tentative evidence that $Sigma_{rm{cl}}$ needs to be $gtrsim1:{rm{g,cm}}^{-2}$. We discuss how this is consistent with expectations from core accretion models that include internal feedback from the forming massive star.



قيم البحث

اقرأ أيضاً

We present multi-wavelength images observed with SOFIA-FORCAST from $sim$10 to 40 $mu$m of seven high luminosity massive protostars, as part of the SOFIA Massive (SOMA) Star Formation Survey. Source morphologies at these wavelengths appear to be infl uenced by outflow cavities and extinction from dense gas surrounding the protostars. Using these images, we build spectral energy distributions (SEDs) of the protostars, also including archival data from Spitzer, Herschel and other facilities. Radiative transfer (RT) models of Zhang & Tan (2018), based on Turbulent Core Accretion theory, are then fit to the SEDs to estimate key properties of the protostars. Considering the best five models fit to each source, the protostars have masses $m_{*} sim 12-64 : M_{odot}$ accreting at rates of $dot{m}_{*} sim 10^{-4}-10^{-3} : M_{odot} : rm yr^{-1}$ inside cores of initial masses $M_{c} sim 100-500 : M_{odot}$ embedded in clumps with mass surface densities $Sigma_{rm cl} sim 0.1-3 : rm g : cm^{-2}$ and span a luminosity range of $10^{4} -10^{6} : L_{odot}$. Compared with the first eight protostars in Paper I, the sources analyzed here are more luminous, and thus likely to be more massive protostars. They are often in a clustered environment or have a companion protostar relatively nearby. From the range of parameter space of the models, we do not see any evidence that $Sigma_{rm cl}$ needs to be high to form these massive stars. For most sources the RT models provide reasonable fits to the SEDs, though the cold clump material often influences the long wavelength fitting. However, for sources in very clustered environments, the model SEDs may not be such a good description of the data, indicating potential limitations of the models for these regions.
We present an overview and first results of the Stratospheric Observatory For Infrared Astronomy Massive (SOMA) Star Formation Survey, which is using the FORCAST instrument to image massive protostars from $sim10$--$40:rm{mu}rm{m}$. These wavelengths trace thermal emission from warm dust, which in Core Accretion models mainly emerges from the inner regions of protostellar outflow cavities. Dust in dense core envelopes also imprints characteristic extinction patterns at these wavelengths, causing intensity peaks to shift along the outflow axis and profiles to become more symmetric at longer wavelengths. We present observational results for the first eight protostars in the survey, i.e., multiwavelength images, including some ancillary ground-based MIR observations and archival {it{Spitzer}} and {it{Herschel}} data. These images generally show extended MIR/FIR emission along directions consistent with those of known outflows and with shorter wavelength peak flux positions displaced from the protostar along the blueshifted, near-facing sides, thus confirming qualitative predictions of Core Accretion models. We then compile spectral energy distributions and use these to derive protostellar properties by fitting theoretical radiative transfer models. Zhang and Tan models, based on the Turbulent Core Model of McKee and Tan, imply the sources have protostellar masses $m_*sim10$--50$:M_odot$ accreting at $sim10^{-4}$--$10^{-3}:M_odot:{rm{yr}}^{-1}$ inside cores of initial masses $M_csim30$--500$:M_odot$ embedded in clumps with mass surface densities $Sigma_{rm{cl}}sim0.1$--3$:{rm{g:cm}^{-2}}$. Fitting Robitaille et al. models typically leads to slightly higher protostellar masses, but with disk accretion rates $sim100times$ smaller. We discuss reasons for these differences and overall implications of these first survey results for massive star formation theories.
Massive clumps tend to fragment into clusters of cores and condensations, some of which form high-mass stars. In this work, we study the structure of massive clumps at different scales, analyze the fragmentation process, and investigate the possibili ty that star formation is triggered by nearby HII regions. We present a high angular resolution study of a sample of 8 massive proto-cluster clumps. Combining infrared data, we use few-arcsecond resolution radio- and millimeter interferometric data to study their fragmentation and evolution. Our sample is unique in the sense that all the clumps have neighboring HII regions. Taking advantage of that, we test triggered star formation using a novel method where we study the alignment of the centres of mass traced by dust emission at multiple scales. The eight massive clumps have masses ranging from 228 to 2279 $M_odot$. The brightest compact structures within infrared bright clumps are typically associated with embedded compact radio continuum sources. The smaller scale structures of $R_{rm eff}$ $sim$ 0.02 pc observed within each clump are mostly gravitationally bound and massive enough to form at least a B3-B0 type star. Many condensations have masses larger than 8 $M_odot$ at small scale of $R_{rm eff}$ $sim$ 0.02 pc. Although the clumps are mostly infrared quiet, the dynamical movements are active at clump scale ($sim$ 1 pc). We studied the spatial distribution of the gas conditions detected at different scales. For some sources we find hints of external triggering, whereas for others we find no significant pattern that indicates triggering is dynamically unimportant. This probably indicates that the different clumps go through different evolutionary paths. In this respect, studies with larger samples are highly desired.
Massive clumps, prior to the formation of any visible protostars, are the best candidates to search for the elusive massive starless cores. In this work we investigate the dust and gas properties of massive clumps selected to be 70 micron quiet, ther efore good starless candidates. Our sample of 18 clumps has masses 300 < M < 3000 M_sun, radius 0.54 < R < 1.00 pc, surface densities Sigma > 0.05 g cm^-2 and luminosity/mass ratio L/M < 0.3. We show that half of these 70 micron quiet clumps embed faint 24 micron sources. Comparison with GLIMPSE counterparts shows that 5 clumps embed young stars of intermediate stellar mass up to ~5.5 M_sun. We study the clump dynamics with observations of N2H+ (1-0), HNC (1-0) and HCO+ (1-0) made with the IRAM 30m telescope. Seven clumps have blue-shifted spectra compatible with infall signatures, for which we estimate a mass accretion rate 0.04 < M_dot < 2.0 x 10^-3 M_sun yr^-1, comparable with values found in high-mass protostellar regions, and free-fall time of the order of t_ff = 3 x 10^5 yr. The only appreciable difference we find between objects with and without embedded 24 micron sources is that the infall rate appears to increase from 24 micron dark to 24 micron bright objects. We conclude that all 70 micron quiet objects have similar properties on clump scales, independently of the presence of an embedded protostar. Based on our data we speculate that the majority, if not all of these clumps may already embed faint, low-mass protostellar cores. If these clumps are to form massive stars, this must occur after the formation of these lower mass stars.
212 - Yichen Zhang 2013
We present radiation transfer (RT) simulations of evolutionary sequences of massive protostars forming from massive dense cores in environments of high surface densities. The protostellar evolution is calculated with a detailed multi-zone model, with the accretion rate regulated by feedback from an evolving disk-wind outflow cavity. Disk and envelope evolutions are calculated self-consistently. In this framework, an evolutionary track is determined by three environmental initial conditions: the initial core mass M_c, the mean surface density of the ambient star-forming clump Sigma_cl, and the rotational-to-gravitational energy ratio of the initial core, beta_c. Evolutionary sequences with various M_c, Sigma_cl, beta_c are constructed. We find that in a fiducial model with M_c=60Msun, Sigma_cl=1 g/cm^2 and beta_c=0.02, the final star formation efficiency >~0.43. For each evolutionary track, RT simulations are performed at selected stages, with temperature profiles, SEDs, and images produced. At a given stage the envelope temperature is highly dependent on Sigma_cl, but only weakly dependent on M_c. The SED and MIR images depend sensitively on the evolving outflow cavity, which gradually wides as the protostar grows. The fluxes at <~100 microns increase dramatically, and the far-IR peaks move to shorter wavelengths. We find that, despite scatter caused by different M_c, Sigma_cl, beta, and inclinations, sources at a given evolutionary stage appear in similar regions on color-color diagrams, especially when using colors at >~ 70 microns, where the scatter due to the inclination is minimized, implying that such diagrams can be useful diagnostic tools of evolutionary stages of massive protostars. We discuss how intensity profiles along or perpendicular to the outflow axis are affected by environmental conditions and source evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا