ﻻ يوجد ملخص باللغة العربية
We present $sim10-40,mu$m SOFIA-FORCAST images of 14 intermediate-mass protostar candidates as part of the SOFIA Massive (SOMA) Star Formation Survey. We build spectral energy distributions (SEDs), also utilizing archival Spitzer, Herschel and IRAS data. We then fit the SEDs with radiative transfer (RT) models of Zhang & Tan (2018), based on Turbulent Core Accretion theory, to estimate key protostellar properties. With the addition of these intermediate-mass sources, SOMA protostars span luminosities from $sim10^{2}-10^{6}:L_{odot}$, current protostellar masses from $sim0.5-30:M_{odot}$ and ambient clump mass surface densities, $Sigma_{rm cl}$ from $0.1-3:{rm{g:cm}^{-2}}$. A wide range of evolutionary states of the individual protostars and of the protocluster environments are also probed. We have also considered about 50 protostars identified in Infrared Dark Clouds and expected to be at the earliest stages of their evolution. With this global sample, most of the evolutionary stages of high- and intermediate-mass protostars are probed. From the best fitting models, there is no evidence of a threshold value of protocluster clump mass surface density being needed to form protostars up to $sim25:M_odot$. However, to form more massive protostars, there is tentative evidence that $Sigma_{rm{cl}}$ needs to be $gtrsim1:{rm{g,cm}}^{-2}$. We discuss how this is consistent with expectations from core accretion models that include internal feedback from the forming massive star.
We present multi-wavelength images observed with SOFIA-FORCAST from $sim$10 to 40 $mu$m of seven high luminosity massive protostars, as part of the SOFIA Massive (SOMA) Star Formation Survey. Source morphologies at these wavelengths appear to be infl
We present an overview and first results of the Stratospheric Observatory For Infrared Astronomy Massive (SOMA) Star Formation Survey, which is using the FORCAST instrument to image massive protostars from $sim10$--$40:rm{mu}rm{m}$. These wavelengths
Massive clumps tend to fragment into clusters of cores and condensations, some of which form high-mass stars. In this work, we study the structure of massive clumps at different scales, analyze the fragmentation process, and investigate the possibili
Massive clumps, prior to the formation of any visible protostars, are the best candidates to search for the elusive massive starless cores. In this work we investigate the dust and gas properties of massive clumps selected to be 70 micron quiet, ther
We present radiation transfer (RT) simulations of evolutionary sequences of massive protostars forming from massive dense cores in environments of high surface densities. The protostellar evolution is calculated with a detailed multi-zone model, with