ﻻ يوجد ملخص باللغة العربية
A simple and completely general representation of the exact exchange-correlation functional of density-functional theory is derived from the universal Lieb-Oxford bound, which holds for any Coulomb-interacting system. This representation leads to an alternative point of view on popular hybrid functionals, providing a rationale for why they work and how they can be constructed. A similar representation of the exact correlation functional allows to construct fully non-empirical hyper-generalized-gradient approximations (HGGAs), radically departing from established paradigms of functional construction. Numerical tests of these HGGAs for atomic and molecular correlation energies and molecular atomization energies show that even simple HGGAs match or outperform state-of-the-art correlation functionals currently used in solid-state physics and quantum chemistry.
Universal properties of the Coulomb interaction energy apply to all many-electron systems. Bounds on the exchange-correlation energy, inparticular, are important for the construction of improved density functionals. Here we investigate one such unive
Density-functional theory requires ever better exchange-correlation (xc) functionals for the ever more precise description of many-body effects on electronic structure. Universal constraints on the xc energy are important ingredients in the construct
The Lieb-Oxford bound is a constraint upon approximate exchange-correlation functionals. We explore a non-empirical tightening of that bound in both universal and electron-number-dependent form. The test functional is PBE. Regarding both atomization
We assess the validity of various exchange-correlation functionals for computing the structural, vibrational, dielectric, and thermodynamical properties of materials in the framework of density-functional perturbation theory (DFPT). We consider five
Water mediates electrostatic interactions via the orientation of its dipoles around ions, molecules, and interfaces. This induced water polarization consequently influences multiple phenomena. In particular, water polarization modulated by nanoconfin