ﻻ يوجد ملخص باللغة العربية
Density-functional theory requires ever better exchange-correlation (xc) functionals for the ever more precise description of many-body effects on electronic structure. Universal constraints on the xc energy are important ingredients in the construction of improved functionals. Here we investigate one such universal property of xc functionals: the Lieb-Oxford lower bound on the exchange-correlation energy, $E_{xc}[n] ge -C int d^3r n^{4/3}$, where $Cleq C_{LO}=1.68$. To this end, we perform a survey of available exact or near-exact data on xc energies of atoms, ions, molecules, solids, and some model Hamiltonians (the electron liquid, Hookes atom and the Hubbard model). All physically realistic density distributions investigated are consistent with the tighter limit $C leq 1$. For large classes of systems one can obtain class-specific (but not fully universal) similar bounds. The Lieb-Oxford bound with $C_{LO}=1.68$ is a key ingredient in the construction of modern xc functionals, and a substantial change in the prefactor $C$ will have consequences for the performance of these functionals.
Universal properties of the Coulomb interaction energy apply to all many-electron systems. Bounds on the exchange-correlation energy, inparticular, are important for the construction of improved density functionals. Here we investigate one such unive
The Lieb-Oxford bound is a constraint upon approximate exchange-correlation functionals. We explore a non-empirical tightening of that bound in both universal and electron-number-dependent form. The test functional is PBE. Regarding both atomization
A simple and completely general representation of the exact exchange-correlation functional of density-functional theory is derived from the universal Lieb-Oxford bound, which holds for any Coulomb-interacting system. This representation leads to an
The Shannon lower bound is one of the few lower bounds on the rate-distortion function that holds for a large class of sources. In this paper, it is demonstrated that its gap to the rate-distortion function vanishes as the allowed distortion tends to
Transition metal dichalcogenides (TMDCs) have attracted significant attention for optoelectronic, photovoltaic and photoelectrochemical applications. The properties of TMDCs are highly dependent on the number of stacked atomic layers, which is usuall