ترغب بنشر مسار تعليمي؟ اضغط هنا

High rate, long-distance quantum key distribution over 250km of ultra low loss fibres

201   0   0.0 ( 0 )
 نشر من قبل Damien Stucki
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a fully automated quantum key distribution prototype running at 625 MHz clock rate. Taking advantage of ultra low loss fibres and low-noise superconducting detectors, we can distribute 6,000 secret bits per second over 100 km and 15 bits per second over 250km.



قيم البحث

اقرأ أيضاً

Quantum key distribution provides secure keys resistant to code-breaking quantum computers. The continuous-variable version of quantum key distribution offers the advantages of higher secret key rates in metropolitan areas, as well as the use of stan dard telecom components that can operate at room temperature. However, the transmission distance of these systems (compared with discrete-variable systems) are currently limited and considered unsuitable for long-distance distribution. Herein, we report the experimental results of long distance continuous-variable quantum key distribution over 202.81 km of ultralow-loss optical fiber by suitably controlling the excess noise and employing highly efficient reconciliation procedures. This record-breaking implementation of the continuous-variable quantum key distribution doubles the previous distance record and shows the road for long-distance and large-scale secure quantum key distribution using room-temperature standard telecom components.
85 - Hao Shu 2021
Quantum key distribution(QKD) is an important area in quantum information theory. Nowadays, there are many protocols such as BB84 protocol, Lo-Chaus protocol and GR10 protocol. They usually require legitimated parties have the ability to create parti cles, using a sifting procedures (BB84, GR10), or must destroy entangled states (Lo-Chau). In this paper, we give a QKD scheme which can recycle entangled states and need not to run sifting procedures. The protocol use teleportation and mutual unbiased bases of qudits. Moreover, The scheme can be modified to add a third party who assumes all the states creating procedures and so the communicated parties need not to create states. This is in fact an entanglement distribution protocol. Also, the protocol can be modified for distributing key over arbitrary long distance. We compare our protocol with the previous protocols and discuss the security of it by corresponding to BB84 protocol.
189 - Masahiro Takeoka , Saikat Guha , 2015
Since 1984, various optical quantum key distribution (QKD) protocols have been proposed and examined. In all of them, the rate of secret key generation decays exponentially with distance. A natural and fundamental question is then whether there are y et-to-be discovered optical QKD protocols (without quantum repeaters) that could circumvent this rate-distance tradeoff. This paper provides a major step towards answering this question. We show that the secret-key-agreement capacity of a lossy and noisy optical channel assisted by unlimited two-way public classical communication is limited by an upper bound that is solely a function of the channel loss, regardless of how much optical power the protocol may use. Our result has major implications for understanding the secret-key-agreement capacity of optical channels---a long-standing open problem in optical quantum information theory---and strongly suggests a real need for quantum repeaters to perform QKD at high rates over long distances.
Quantum key distribution (QKD) permits information-theoretically secure transmission of digital encryption keys, assuming that the behaviour of the devices employed for the key exchange can be reliably modelled and predicted. Remarkably, no assumptio ns have to be made on the capabilities of an eavesdropper other than that she is bounded by the laws of Nature, thus making the security of QKD unconditional. However, unconditional security is hard to achieve in practice. For example, any experimental realisation can only collect finite data samples, leading to vulnerabilities against coherent attacks, the most general class of attacks, and for some protocols the theoretical proof of robustness against these attacks is still missing. For these reasons, in the past many QKD experiments have fallen short of implementing an unconditionally secure protocol and have instead considered limited attacking capabilities by the eavesdropper. Here, we explore the security of QKD against coherent attacks in the most challenging environment: the long-distance transmission of keys. We demonstrate that the BB84 protocol can provide positive key rates for distances up to 240 km without multiplexing of conventional signals, and up to 200 km with multiplexing. Useful key rates can be achieved even for the longest distances, using practical thermo-electrically cooled single-photon detectors.
Device-independent quantum key distribution (DIQKD) exploits the violation of a Bell inequality to extract secure key even if the users devices are untrusted. Currently, all DIQKD protocols suffer from the secret key capacity bound, i.e., the secret key rate scales linearly with the transmittance of two users. Here we propose a heralded DIQKD scheme based on entangled coherent states to improve entangling rates whereby long-distance entanglement is created by single-photon-type interference. The secret key rate of our scheme can significantly outperform the traditional two-photon-type Bell-state measurement scheme and, importantly, surpass the above capacity bound. Our protocol therefore is an important step towards a realization of DIQKD and can be a promising candidate scheme for entanglement swapping in future quantum internet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا