ترغب بنشر مسار تعليمي؟ اضغط هنا

Long-Distance Continuous-Variable Quantum Key Distribution over 202.81 km of Fiber

139   0   0.0 ( 0 )
 نشر من قبل Yi-Chen Zhang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum key distribution provides secure keys resistant to code-breaking quantum computers. The continuous-variable version of quantum key distribution offers the advantages of higher secret key rates in metropolitan areas, as well as the use of standard telecom components that can operate at room temperature. However, the transmission distance of these systems (compared with discrete-variable systems) are currently limited and considered unsuitable for long-distance distribution. Herein, we report the experimental results of long distance continuous-variable quantum key distribution over 202.81 km of ultralow-loss optical fiber by suitably controlling the excess noise and employing highly efficient reconciliation procedures. This record-breaking implementation of the continuous-variable quantum key distribution doubles the previous distance record and shows the road for long-distance and large-scale secure quantum key distribution using room-temperature standard telecom components.



قيم البحث

اقرأ أيضاً

We introduce a robust scheme for long-distance continuous-variable (CV) measurement-device-independent (MDI) quantum key distribution (QKD) in which we employ post-selection between distant parties communicating through the medium of an untrusted rel ay. We perform a security analysis that allows for general transmissivity and thermal noise variance of each link, in which we assume an eavesdropper performs a collective attack and controls the excess thermal noise in the channels. The introduction of post-selection enables the parties to sustain a secret key rate over distances exceeding those of existing CV MDI protocols. In the worst-case scenario in which the relay is positioned equidistant between them, we find that the parties may communicate securely over a range of 14 km in standard optical fiber. Our protocol helps to overcome the rate-distance limitations of previously proposed CV MDI protocols while maintaining many of their advantages.
The basic principle of quantum mechanics guarantee the unconditional security of quantum key distribution (QKD) at the cost of inability of amplification of quantum state. As a result, despite remarkable progress in worldwide metropolitan QKD network s over the past decades, long haul fiber QKD network without trustful relay has not been achieved yet. Here, through sending-or-not-sending (SNS) protocol, we complete a twin field QKD (TF-QKD) and distribute secure keys without any trusted repeater over a 511 km long haul fiber trunk linking two distant metropolitans. Our secure key rate is around 3 orders of magnitudes greater than what is expected if the previous QKD field test system over the same length were applied. The efficient quantum-state transmission and stable single-photon interference over such a long distance deployed fiber paves the way to large-scale fiber quantum networks.
A working free-space quantum key distribution (QKD) system has been developed and tested over an outdoor optical path of ~1 km at Los Alamos National Laboratory under nighttime conditions. Results show that QKD can provide secure real-time key distri bution between parties who have a need to communicate secretly. Finally, we examine the feasibility of surface to satellite QKD.
Quantum key distribution (QKD) is one of the most practical applications in quantum information processing, which can generate information-theoretical secure keys between remote parties. With the help of the wavelength-division multiplexing technique , QKD has been integrated with the classical optical communication networks. The wavelength-division multiplexing can be further improved by the mode-wavelength dual multiplexing technique with few-mode fiber (FMF), which has additional modal isolation and large effective core area of mode, and particularly is practical in fabrication and splicing technology compared with the multi-core fiber. Here, we present for the first time a QKD implementation coexisting with classical optical communication over weakly-coupled FMF using all-fiber mode-selective couplers. The co-propagation of QKD with one 100 Gbps classical data channel at -2.60 dBm launched power is achieved over 86 km FMF with 1.3 kbps real-time secure key generation. Compared with single-mode fiber, the average Raman noise in FMF is reduced by 86% at the same fiber-input power. Our work implements an important approach to the integration between QKD and classical optical communication and previews the compatibility of quantum communications with the next-generation mode division multiplexing networks
85 - Hao Shu 2021
Quantum key distribution(QKD) is an important area in quantum information theory. Nowadays, there are many protocols such as BB84 protocol, Lo-Chaus protocol and GR10 protocol. They usually require legitimated parties have the ability to create parti cles, using a sifting procedures (BB84, GR10), or must destroy entangled states (Lo-Chau). In this paper, we give a QKD scheme which can recycle entangled states and need not to run sifting procedures. The protocol use teleportation and mutual unbiased bases of qudits. Moreover, The scheme can be modified to add a third party who assumes all the states creating procedures and so the communicated parties need not to create states. This is in fact an entanglement distribution protocol. Also, the protocol can be modified for distributing key over arbitrary long distance. We compare our protocol with the previous protocols and discuss the security of it by corresponding to BB84 protocol.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا