ترغب بنشر مسار تعليمي؟ اضغط هنا

Proximity-induced superconductivity in nanowires: Mini-gap state and differential magnetoresistance oscillations

137   0   0.0 ( 0 )
 نشر من قبل Jian Wang
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study proximity-induced superconductivity in gold nanowires as a function of the length of the nanowire, magnetic field, and excitation current. Short nanowires exhibit a sharp superconducting transition, whereas long nanowires show nonzero resistance. At intermediate lengths, however, we observe two sharp transitions; the normal and superconducting regions are separated by what we call the mini-gap phase. Additionally, we detect periodic oscillations in the differential magnetoresistance. We provide a theoretical model for the mini-gap phase as well as the periodic oscillations in terms of the coexistence of proximity-induced superconductivity with a normal region near the center of the wire, created either by temperature or application of a magnetic field.



قيم البحث

اقرأ أيضاً

Superconducting topological crystalline insulators (TCI) are predicted to host new topological phases protected by crystalline symmetries, but available materials are insufficiently suitable for surface studies. To induce superconductivity at the sur face of a prototypical TCI SnTe, we use molecular beam epitaxy to grow a heterostructure of SnTe and a high-Tc superconductor Fe(Te,Se), utilizing a buffer layer to bridge the large lattice mismatch between SnTe and Fe(Te,Se). Using low-temperature scanning tunneling microscopy and spectroscopy, we measure a prominent spectral gap on the surface of SnTe, and demonstrate its superconducting origin by its dependence on temperature and magnetic field. Our work provides a new platform for atomic-scale investigations of emergent topological phenomena in superconducting TCIs.
In this letter we report on proximity superconductivity induced in CdTe-HgTe core-shell nanowires, a quasi-one-dimensional heterostructure of the topological insulator HgTe. We demonstrate a Josephson supercurrent in our nanowires contacted with supe rconducting Al leads. The observation of a sizable $I_c R_n$ product, a positive excess current and multiple Andreev reflections up to fourth order further indicate a high interface quality of the junctions.
We report an experimental study of proximity effect-induced superconductivity in crystalline Cu and Co nanowires and a nanogranular Co nanowire structure in contact with a superconducting W floating electrode which we call inducer. The nanowires were grown by electrochemical deposition in heavy-ion-track etched polycarbonate templates. The nanogranular Co structure was fabricated by focused electron beam induced deposition (FEBID), while the amorphous W inducer was obtained by focused ion beam induced deposition (FIBID). For electrical resistance measurements up to three pairs of Pt voltage leads were deposited by FIBID at different distances beside the inner inducer electrode, thus allowing us to probe the proximity effect over a length of 2-12 $mu$m. Relative $R(T)$ drops of the same order of magnitude have been observed for the Co and Cu nanowires when sweeping the temperature below 5.2 K ($T_c$ of the FIBID-deposited W inducer). By contrast, relative $R(T)$ drops were found to be an order of magnitude smaller for the nanogranular Co nanowire structure. Our analysis of the resistance data shows that the superconducting proximity length in crystalline Cu and Co is about 1 $mu$m at low temperatures, attesting to a long-range proximity effect in the case of ferromagnetic Co. Moreover, this long-range proximity effect has been revealed to be insusceptible to magnetic fields up to 11 T, which is indicative of spin-triplet pairing. At the same time, in the nanogranular Co structure proximity-induced superconductivity is strongly suppressed due to the dominating Cooper pair scattering caused by the intrinsic microstructure of the FEBID deposit.
181 - Fan Yang , Fanming Qu , Jie Shen 2012
We have studied the electron transport properties of topological insulator-related material Bi2Se3 near the superconducting Pb-Bi2Se3 interface, and found that a superconducting state is induced over an extended volume in Bi2Se3. This state can carry a Josephson supercurrent, and demonstrates a gap-like structure in the conductance spectra as probed by a normal-metal electrode. The establishment of the gap is not by confining the electrons into a narrow space close to the superconductor-normal metal interface, as previously observed in other systems, but presumably via electron-electron attractive interaction in Bi2Se3.
We have measured the evolution of the tunneling density of states (DOS) in superconductor/ferromagnet (S/F) bilayers with increasing F-layer thickness, where F in our experiment is the strong ferromagnet Ni. As a function of increasing Ni thickness, we detect multiple oscillations in the DOS at the Fermi energy from differential conductance measurements. The features in the DOS associated with the proximity effect change from normal to inverted twice as the Ni thickness increases from 1 to 5 nm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا