ﻻ يوجد ملخص باللغة العربية
Locally-gated single-layer graphene sheets have unusual discrete energy states inside the potential barrier induced by a finite-width gate. These states are localized outside the Dirac cone of continuum states and are responsible for novel quantum transport phenomena. Specifically, the longitudinal (along the barrier) conductance exhibits oscillations as a function of barrier height and/or width, which are both controlled by a nearby gate. The origin of these oscillations can be traced back to singularities in the density of localized states. These graphene conductance-oscillations resemble the Shubnikov-de-Haas (SdH) magneto-oscillations; however, here these are driven by an electric field instead of a magnetic field.
Epitaxial graphene films have been formed on the C-face of semi-insulating 4H-SiC substrates by a high temperature sublimation process. Nano-scale square antidot arrays have been fabricated on these graphene films. At low temperatures, magneto-conduc
Feedback-controlled electric breakdown of graphene in air or vacuum is a well-established way of fabricating tunnel junctions, nanogaps, and quantum dots. We show that the method is equally applicable to encapsulated graphene constrictions fabricated
We study quantum point contacts in two-dimensional topological insulators by means of quantum transport simulations for InAs/GaSb heterostructures and HgTe/(Hg,Cd)Te quantum wells. In InAs/GaSb, the density of edge states shows an oscillatory decay a
Measurement and theory of the two-terminal conductance of monolayer and bilayer graphene in the quantum Hall regime are compared. We examine features of conductance as a function of gate voltage that allow monolayer, bilayer, and gapped samples to be
The contact conductance between graphene and two quantum wires which serve as the leads to connect graphene and electron reservoirs is theoretically studied. Our investigation indicates that the contact conductance depends sensitively on the graphene