ترغب بنشر مسار تعليمي؟ اضغط هنا

Dust formation by the colliding-wind WC5+O9 binary WR19 at periastron passage

145   0   0.0 ( 0 )
 نشر من قبل Peredur Williams
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present infrared photometry of the episodic dust-making Wolf-Rayet system WR19 (LS3), tracking its fading from a third observed dust-formation episode in 2007 and strengthening the view that these episodes are periodic (P = 10.1+/-0.1 y). Radial velocities of the O9 component observed between 2001 and 2008 show RV variations consistent with WC19 being a spectroscopic binary of high eccentricity (e=0.8), having periastron passage in 2007.14, shortly before the phase of dust formation. In this respect, WR19 resembles the archetypical episodic dust-making colliding-wind binary system WR140.



قيم البحث

اقرأ أيضاً

We present high-resolution infrared (2--18 micron) images of the archetypal periodic dust-making Wolf-Rayet binary system WR140 (HD 193793) taken between 2001 and 2005, and multi-colour (J -- [19.5]) photometry observed between 1989 and 2001. The ima ges resolve the dust cloud formed by WR140 in 2001, allowing us to track its expansion and cooling, while the photometry allows tracking the average temperature and total mass of the dust. The combination of the two datasets constrains the optical properties of the dust. The most persistent dust features, two concentrations at the ends of a `bar of emission to the south of the star, were observed to move with constant proper motions of 324+/-8 and 243+/-7 mas/y. Longer wavelength (4.68-micron and 12.5-micron) images shows dust emission from the corresponding features from the previous (1993) periastron passage and dust-formation episode. A third persistent dust concentration to the east of the binary (the `arm) was found to have a proper motion ~ 320 mas/y. Extrapolation of the motions of the concentrations back to the binary suggests that the eastern `arm began expansion 4--5 months earlier than those in the southern `bar, consistent with the projected rotation of the binary axis and wind-collision region (WCR) on the sky. Comparison of model dust images and the observations constrain the intervals when the WCR was producing sufficiently compressed wind for dust nucleation in the WCR, and suggests that the distribution of this material was not uniform about the axis of the WCR, but more abundant in the following edge in the orbital plane.
Observations of the WC9+OB system WR 65 in the infrared show variations of its dust emission consistent with a period near 4.8~yr, suggesting formation in a colliding-wind binary (CWB) having an elliptical orbit. If we adopt the IR maximum as zero ph ase, the times of X-ray maximum count and minimum extinction to the hard component measured by Oskinova & Hamann fall at phases 0.4--0.5, when the separation of the WC9 and OB stars is greatest. We consider WR 65 in the context of other WC8-9+OB stars showing dust emission.
We describe the results of the world-wide observing campaign of the highly eccentric Be binary system delta Scorpii 2011 periastron passage which involved professional and amateur astronomers. Our spectroscopic observations provided a precise measure ment of the system orbital period at 10.8092+/- 0.0005 years. Fitting of the He II 4686A line radial velocity curve determined the periastron passage time on 2011 July 3, UT 9:20 with a 0.9--day uncertainty. Both these results are in a very good agreement with recent findings from interferometry. We also derived new evolutionary masses of the binary components (13 and 8.2 Msun) and a new distance of 136 pc from the Sun, consistent with the HIPPARCOS parallax. The radial velocity and profile variations observed in the H_alpha line near the 2011 periastron reflected the interaction of the secondary component and the circumstellar disk around the primary component. Using these data, we estimated a disk radius of 150 Rsun. Our analysis of the radial velocity variations measured during the periastron passage time in 2000 and 2011 along with those measured during the 20th century, the high eccentricity of the system, and the presence of a bow shock-like structure around it suggest that delta Sco might be a runaway triple system. The third component should be external to the known binary and move on an elliptical orbit that is tilted by at least 40 degree with respect to the binary orbital plane for such a system to be stable and responsible for the observed long-term radial velocity variations.
260 - P. M. Williams 2013
Infrared photometry of the probable triple WC4(+O?)+O8I: Wolf-Rayet system HD 36402 (= BAT99-38) in the Large Magellanic Cloud (LMC) shows emission characteristic of heated dust. The dust emission is variable on a time-scale of years, with a period n ear 4.7 yr, possibly associated with orbital motion of the O8 supergiant and the inner P ~ 3.03-d WC4+O binary. The phase of maximum dust emission is close to that of the X-ray minimum, consistent with both processes being tied to colliding wind effects in an elliptical binary orbit. It is evident that Wolf-Rayet dust formation occurs also in metal-poor environments.
556 - M. Teodoro 2011
The periodic spectroscopic events in eta Carinae are now well established and occur near the periastron passage of two massive stars in a very eccentric orbit. Several mechanisms have been proposed to explain the variations of different spectral feat ures, such as an eclipse by the wind-wind collision boundary, a shell ejection from the primary star or accretion of its wind onto the secondary. All of them have problems explaining all the observed phenomena. To better understand the nature of the cyclic events, we performed a dense monitoring of eta Carinae with 5 Southern telescopes during the 2009 low excitation event, resulting in a set of data of unprecedented quality and sampling. The intrinsic luminosity of the He II 4686 emission line (L~310 Lsun) just before periastron reveals the presence of a very luminous transient source of extreme UV radiation emitted in the wind-wind collision (WWC) region. Clumps in the primarys wind probably explain the flare-like behavior of both the X-ray and He II 4686 light-curves. After a short-lived minimum, He II 4686 emission rises again to a ne
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا