ترغب بنشر مسار تعليمي؟ اضغط هنا

Pattern recognition and PID for COMPASS RICH-1

124   0   0.0 ( 0 )
 نشر من قبل Federica Sozzi
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A package for pattern recognition and PID by COMPASS RICH-1 has been developed and used for the analysis of COMPASS data collected in the years 2002 to 2004, and 2006-2007 with the upgraded RICH-1 photon detectors. It has allowed the full characterization of the detector in the starting version and in the upgraded one, as well as the PID for physics results. We report about the package structure and algorithms, and the detector characterization and PID results.



قيم البحث

اقرأ أيضاً

After pioneering gaseous detectors of single photon for RICH applications using CsI solid state photocathodes in MWPCs within the RD26 collaboration and by the constructions for the RICH detector of the COMPASS experiment at CERN SPS, in 2016 we have upgraded COMPASS RICH by novel gaseous photon detectors based on MPGD technology. Four novel photon detectors, covering a total active area of 1.5~m$^2$, have been installed in order to cope with the challenging efficiency and stability requirements of the COMPASS physics programme. They are the first application in an experiment of MPGD-based single photon detectors. All aspects of the upgrade are presented, including engineering, mass production, quality assessment and performance. Perspectives for further developments in the field of gaseous single photon detectors are also indicated.
After pioneering gaseous detectors of single photon for RICH applications using CsI solid state photocathodes in MWPCs within the RD26 collaboration and by the constructions for the RICH detector of the COMPASS experiment at CERN SPS, in 2016 we have upgraded COMPASS RICH by novel gaseous photon detectors based on MPGD technology. Four novel photon detectors, covering a total active area of 1.5~m$^2$, have been installed in order to cope with the challenging efficiency and stability requirements of the COMPASS physics programme. These detectors are the first application in an experiment of MPGD-based single photon detectors. All aspects of the upgrade are presented, including engineering, mass production, quality assessment and performance. Perspectives for further developments in the field of gaseous single photon detectors are also presented.
A Set of new MPGD-based Photon Detectors is being built for the upgrade of COMPASS RICH-1. The detectors cover a total active area of 1.4 m$^2$ and are based on a hybrid architecture consisting of two THGEM layers and a Micromegas. A CsI film on one THGEM acts as a reflective photocathode. The characteristics of the detector, the production of the components and their validation tests are described in detail.
The architecture of the novel MPGD-based photon detectors of COMPASS RICH-1 consists in a large-size hybrid MPGD multilayer layout combining two layers of Thick-GEMs and a bulk resistive MICROMEGAS. Concerning biasing voltage, the Thick-GEMs are segm ented in order to reduce the energy released in case of occasional discharges, while the MICROMEGAS anode is segmented in pads individually biased at positive voltage, while the micromesh is grounded. In total, there are ten different electrode types and more than 20000 electrodes supplied by more than 100 HV channels. Commercial power supply units are used. The original elements of the power supply system are the architecture of the voltage distribution net, the compensation, by voltage adjustment, of the effects of pressure and temperature variation affecting the detector gain and a sophisticated control software, which allows to protect the detectors against errors by the operator, to monitor and log voltages and current at 1 Hz rate and to automatically react to detector misbehaviors. The HV system and its performance are described in detail as well as the electrical stability of the detector during the operation at COMPASS.
The novel MPGD-based photon detectors of COMPASS RICH-1 consist of large-size hybrid MPGDs with multi-layer architecture including two layers of Thick-GEMs and a bulk resistive MicroMegas. The top surface of the first THGEM is coated with a CsI film which also acts as photo-cathode. These detectors have been successfully in operation at COMPASS since 2016. Concerning bias-voltage supply, the Thick-GEMs are segmented in order to reduce the energy released in case of occasional discharges, while the MicroMegas anode is segmented into pads individually biased with positive voltage while the micromesh is grounded. In total, there are about ten different electrode types and more than 20000 electrodes supplied by more than 100 HV channels, where appropriate correlations among the applied voltages are required for the correct operation of the detectors. Therefore, a robust control system is mandatory, implemented by a custom designed software package, while commercial power supply units are used. This sophisticated control system allows to protect the detectors against errors by the operator, to monitor and log voltages and currents at 1 Hz rate, and automatically react to detector misbehaviour. In addition, a voltage compensation system has been developed to automatically adjust the biasing voltage according to environmental pressure and temperature variations, to achieve constant gain over time. This development answers to a more general need. In fact, voltage compensation is always a requirement for the stability of gaseous detectors and its need is enhanced in multi-layer ones. In this paper, the HV system and its performance are described in details, as well as the stability of the novel MPGD-based photon detectors during the physics data taking at COMPASS.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا